Подпишитесь на наши новости
Вернуться к началу с статьи up
 

КИНЕ́ТИКА ХИМИ́ЧЕСКАЯ

  • рубрика

    Рубрика: Химия

  • родственные статьи
  • image description

    В книжной версии

    Том 13. Москва, 2009, стр. 702

  • image description

    Скопировать библиографическую ссылку:




Авторы: А. Х. Воробьёв

КИНЕ́ТИКА ХИМИ́ЧЕСКАЯ, раз­дел фи­зич. хи­мии, изу­чаю­щий хи­мич. ре­ак­цию как про­цесс, про­те­каю­щий во вре­ме­ни. Осн. за­да­чей К. х. яв­ля­ет­ся опи­са­ние и пред­ска­за­ние ско­ро­стей хи­мич. пре­вра­ще­ний разл. ти­пов и оп­ре­де­ле­ние за­ко­но­мер­но­стей влия­ния на ско­рость и на­прав­ле­ние ре­ак­ции ус­ло­вий её осу­ще­ст­в­ле­ния. Тео­рия эле­мен­тар­но­го ак­та хи­мич. ре­ак­ции на­прав­ле­на на де­таль­ное опи­са­ние еди­нич­но­го со­бы­тия хи­мич. пре­вра­ще­ния с уча­сти­ем мо­ле­кул, ио­нов, сво­бод­ных ра­ди­ка­лов и др. час­тиц. Хи­мич. ре­ак­ции, пред­став­ляю­щие со­бой со­во­куп­ность эле­мен­тар­ных ак­тов разл. ти­пов, на­зы­ва­ют­ся слож­ны­ми хи­ми­че­ски­ми ре­ак­ция­ми. Це­лью ки­не­тич. ис­сле­до­ва­ния слож­ной хи­мич. ре­ак­ции яв­ля­ет­ся из­ме­ре­ние ско­ро­сти ре­ак­ции в разл. ус­ло­ви­ях, оп­ре­де­ле­ние ме­ха­низ­ма хи­ми­че­ской ре­ак­ции, т. е. вы­яв­ле­ние по­сле­до­ва­тель­но­сти эле­мен­тар­ных ре­ак­ций, ко­то­рые пре­тер­пе­ва­ют ис­ход­ные реа­ген­ты в хо­де пре­вра­ще­ния в про­дук­ты ре­ак­ции, и по­строе­ние на этой ос­но­ве ма­те­ма­тич. мо­де­ли, по­зво­ляю­щей пред­ска­зы­вать ско­рость и на­прав­ле­ние ре­ак­ции в за­дан­ных ус­ло­ви­ях. Ско­рость про­те­ка­ния хи­мич. ре­ак­ций, ос­лож­нён­ных про­цес­са­ми мас­со- и те­п­ло­об­ме­на, рас­смат­ри­ва­ет хи­мич. мак­ро­ки­не­ти­ка.

По­сколь­ку опи­са­ние ско­ро­сти, ме­ха­низ­ма и со­ста­ва про­дук­тов хи­мич. ре­акций важ­но в лю­бой об­лас­ти хи­мии, тео­ре­тич. пред­став­ле­ния и экс­пе­рим. ме­то­ды К. х. раз­ви­ва­ют­ся разл. раз­де­ла­ми хи­мич. нау­ки. Са­мо­сто­ят. раз­де­ла­ми К. х. яв­ля­ют­ся ки­не­ти­ка ка­та­ли­ти­че­ских, в т. ч. фер­мен­та­тив­ных, ре­ак­ций (см. Ка­та­лиз, Фер­мен­та­тив­ный ка­та­лиз), ки­не­ти­че­ские ме­то­ды ана­ли­за, ки­не­ти­ка фо­то­хи­ми­че­ских ре­ак­ций, ки­не­ти­ка элек­трод­ных про­цес­сов, ки­не­ти­ка ра­диа­ци­он­но-хи­ми­че­ских ре­ак­ций и др. Для опи­са­ния ско­ро­стей хи­мич. про­цес­сов в слож­ных объ­ек­тах ис­поль­зу­ют­ся ки­не­тич. мо­де­ли тех­но­ло­гич. про­цес­сов, ки­не­ти­ка про­цес­сов го­ре­ния и взры­ва, фар­ма­ко­ки­не­ти­ка, ки­не­тич. мо­де­ли в хи­мии ат­мо­сфе­ры, гид­ро­сфе­ры и др.

Исторический очерк

Пер­вые ки­не­тич. ис­сле­до­ва­ния с из­ме­ре­ни­ем ско­ро­сти хи­мич. ре­ак­ции вы­пол­ни­ли Л. Виль­гель­ми (пред­ло­жил ма­те­ма­тич. вы­ра­же­ние для ско­ро­сти ре­ак­ции гид­ро­ли­за са­ха­ро­зы, 1850), М. Берт­ло совм. со сво­им уче­ни­ком Л. Пе­ан де Сен-Жи­лем (ус­та­но­ви­ли влия­ние на рав­но­ве­сие масс ве­ществ в ре­ак­ци­он­ной сме­си, 1862–63). В 1864–1867 К. Гульд­берг и П. Ваа­ге сфор­му­ли­ро­ва­ли дей­ст­вую­щих масс за­кон. В 1884 Я. Вант-Гофф по­лу­чил фор­му­лы, опи­сы­ваю­щие ки­не­ти­ку про­те­ка­ния мо­но-, би- и три­мо­ле­ку­ляр­ных ре­ак­ций, и обоб­щил экс­пе­рим. дан­ные в пер­вой мо­но­гра­фии по К. х. В 1889 С. Ар­ре­ни­ус сфор­му­ли­ро­вал за­кон тем­пе­ра­тур­ной за­ви­си­мо­сти кон­стан­ты ско­ро­сти про­стых ре­ак­ций. В 1870-х гг. Н. А. Мен­шут­кин вы­пол­нил се­рию ки­не­тич. ис­сле­до­ва­ний, ввёл (1888) в отеч. на­уч. лит-ру тер­мин «хи­ми­че­ская ки­не­ти­ка». Пред­став­ле­ния о важ­ной ро­ли про­ме­жу­точ­ных про­дук­тов в про­те­ка­нии слож­ных ре­ак­ций вве­де­ны в К. х. в пе­рок­сид­ной тео­рии окис­ле­ния Ба­ха – Энг­ле­ра (1897) и в тео­рии со­пря­жён­ных ре­ак­ций Лю­те­ра – Ши­ло­ва (1903–05). Не­раз­ветв­лён­ные цеп­ные ре­ак­ции от­кры­ты М. Бо­ден­штей­ном (1913), раз­ветв­лён­ные – Н. Н. Се­мё­но­вым и С. Хин­шел­ву­дом (1926–28). Важ­ный вклад в раз­ви­тие ки­не­ти­ки цеп­ных ре­ак­ций вне­сли В. Н. Кон­д­рать­ев, В. В. Вое­вод­ский, Н. М. Эма­ну­эль и др. В 1930-х гг. Э. Виг­не­ром, М. По­ла­ни, М. Эван­сом, Г. Эй­рин­гом раз­ра­бо­та­на тео­рия ак­ти­ви­ро­ван­но­го ком­плек­са. Ста­ти­стич. тео­рия Рай­са – Рам­спер­ге­ра – Кас­се­ля – Мар­ку­са (со­кра­щён­но РРКМ) для рас­чё­та кон­стан­ты ско­ро­сти мо­но­мо­ле­ку­ляр­ных ре­ак­ций в га­зах раз­ви­ва­лась в 1927–52. Су­ще­ст­вен­ным ша­гом в изу­че­нии ки­не­ти­ки бы­ст­рых хи­мич. ре­ак­ций и ре­ги­ст­ра­ции ко­рот­ко­жи­ву­щих про­ме­жу­точ­ных про­дук­тов ста­ли раз­ра­бо­тан­ные в сер. 20 в. ме­то­ды им­пульс­но­го фо­то­ли­за (Р. Нор­риш, Дж. Пор­тер, 1950) и им­пульс­но­го ра­дио­ли­за; им­пульс­ная спек­тро­ско­пия с фем­то­се­кунд­ным раз­ре­ше­ни­ем раз­ра­бо­та­на А. Зи­вей­лом в 1987. В 1956 Р. Мар­ку­сом пред­ло­же­на тео­ретич. мо­дель для рас­чё­та кон­стан­ты ско­ро­сти ре­ак­ции пе­ре­но­са элек­тро­на в жид­ких рас­тво­рах. Раз­ви­тие в сер. 20 в. хи­мич. мак­ро­ки­не­ти­ки, в ча­ст­но­сти тео­ре­тич. мо­де­лей хи­мич. взры­ва и го­ре­ния, свя­за­но с име­на­ми Д. А. Франк-Ка­ме­нец­ко­го и Я. Б. Зель­до­ви­ча. От­кры­тие (Б. П. Бе­ло­усов, 1951) и изу­че­ние (А. М. Жа­бо­тин­ский, 1961) ко­ле­ба­тель­ных ре­ак­ций по­слу­жи­ло толч­ком к изу­че­нию не­ли­ней­ных эф­фек­тов в хи­мии. 

Современное состояние и тенденции развития

За про­те­ка­ни­ем хи­мич. ре­ак­ции экс­пе­ри­мен­таль­но сле­дят по из­ме­не­нию кон­цен­тра­ции ис­ход­ных ве­ществ и/или про­дук­тов ре­ак­ции. Ре­зуль­та­ты из­ме­ре­ний, пред­став­лен­ные в ви­де за­ви­си­мо­сти кон­цен­тра­ции ве­ще­ст­ва от вре­ме­ни, на­зы­ва­ют ки­не­тич. кри­вой. Про­из­вод­ную по вре­ме­ни та­кой за­ви­си­мо­сти для ве­ще­ст­ва А на­зы­ва­ют ско­ро­стью хи­мич. ре­ак­ции по это­му ве­ще­ст­ву. Со­глас­но за­ко­ну дей­ст­вую­щих масс, ско­рость хи­ми­че­ской ре­ак­ции $\ce {\nu_{A}A +\nu_{B}B +\nu_{C}C +\dots ->}$ Про­дук­ты, где $\ce {\nu_{A}}$, $\ce {\nu_{B}}$, $\ce {\nu_{C}}$$\dots$ – сте­хио­мет­рич. ко­эф­фи­ци­ен­ты, оп­ре­де­ля­ет­ся ки­не­ти­че­ским урав­не­ни­ем $$(1/\nu_{\text{A}})(d[\text{A}]/dt)=(1/\nu_{\text{B}}(d[\text{B}]/dt)=(1/\nu_{\text{C}}(d[\text{C}]/dt)=\dots = \\ =-k[\text{A}]^{n_A}[\text{B}]^{n_B}[\text{C}]^{n_C}\dots,$$где $k$ – кон­стан­та ско­ро­сти хи­ми­че­ской ре­ак­ции, $n_\text{A}$, $n_\text{B}$, $n_\text{C}$, $\dots$ – по­ря­док хи­мич. ре­ак­ции по реа­ген­там A, B, С и т. д. За­ви­си­мость кон­стан­ты ско­ро­сти ре­ак­ции от аб­со­лют­ной темп-ры $T$ обыч­но вы­ра­жа­ют в фор­ме: $k=A \cdot \exp(-E_a/RT)$, где $A$ – пре­дэкс­по­нен­ци­аль­ный мно­жи­тель, $E_a$ – энер­гия ак­ти­ва­ции ре­ак­ции, $R$ – га­зо­вая по­сто­ян­ная (см. Ар­ре­ниу­са урав­не­ние). Ве­ли­чи­на кон­стан­ты ско­ро­сти, по­ряд­ки по реа­ген­там, энер­гия ак­ти­ва­ции и пред­экс­по­нен­ци­аль­ный мно­жи­тель яв­ля­ют­ся ки­не­тич. па­ра­мет­ра­ми ре­ак­ции. Для слож­ных ре­ак­ций ки­не­тич. па­ра­мет­ры яв­ля­ют­ся эм­пи­рич. ха­рак­те­ри­сти­ка­ми, ко­то­рые мо­гут из­ме­нять­ся при из­ме­не­нии ус­ло­вий про­ве­де­ния ре­ак­ции. Та­кие па­ра­мет­ры на­зы­ва­ют эф­фек­тив­ны­ми, или ка­жу­щи­ми­ся. Ки­не­тич. па­ра­мет­ры эле­мен­тар­ных хи­мич. ре­ак­ций в ка­че­ст­ве объ­ек­тив­ных ха­рак­те­ри­стик на­ка­п­ли­ва­ют­ся в ки­не­тич. ба­зах дан­ных и ис­поль­зу­ют­ся для пред­ска­за­ния ки­не­ти­ки слож­ных про­цес­сов. Ко­ли­че­ст­вен­ное ки­не­тич. опи­са­ние мн. тех­но­ло­гич. и при­род­ных про­цес­сов тре­бу­ет зна­ния ки­не­тич. па­ра­мет­ров со­тен эле­мен­тар­ных хи­мич. ре­ак­ций и чис­лен­но­го ре­ше­ния со­от­вет­ст­вую­ще­го чис­ла ки­не­тич. урав­не­ний.

Объ­яс­не­ние и пред­ска­за­ние ка­че­ст­вен­ных за­ко­но­мер­но­стей ки­не­ти­ки слож­ных ре­ак­ций ос­но­ва­но на вы­яв­ле­нии клю­че­вых ста­дий в их ме­ха­низ­ме и тео­ре­тич. ана­ли­зе со­от­вет­ст­вую­щих ки­не­тич. урав­не­ний. Од­ним из пер­вых при­ме­ров та­ко­го ана­ли­за бы­ло соз­да­ние тео­рии не­раз­ветв­лён­ных и раз­ветв­лён­ных цеп­ных ре­ак­ций, ско­рость ко­то­рых оп­ре­де­ля­ет­ся об­ра­зо­ва­ни­ем, пре­вра­ще­ния­ми и ги­бе­лью ре­ак­ци­он­но­спо­соб­ных про­ме­жу­точ­ных час­тиц – сво­бод­ных ра­ди­ка­лов. Не­ста­биль­ные про­ме­жу­точ­ные час­ти­цы (ато­мы и сво­бод­ные ра­ди­ка­лы, ион-ра­ди­ка­лы, кар­бе­ны, мо­ле­ку­лы в воз­бу­ж­дён­ном со­стоя­нии и др.) на­зы­ва­ют ин­тер­ме­диа­та­ми. Важ­ная роль ин­тер­ме­диа­тов в про­те­ка­нии разл. хи­мич. ре­ак­ций оп­ре­де­ля­ет­ся на­прав­ле­ни­ем и ки­не­тич. ха­рак­те­ри­сти­ка­ми эле­мен­тар­ных ре­ак­ций с их уча­сти­ем.

Для рас­чё­та ки­не­тич. па­ра­мет­ров ис­поль­зу­ют­ся тео­ре­тич. мо­де­ли эле­мен­тар­но­го ак­та хи­мич. ре­ак­ции. Ак­тив­ных столк­но­ве­ний тео­рия рас­смат­ри­ва­ет ве­ро­ят­ность про­те­ка­ния ре­ак­ции в га­зо­вой фа­зе как ве­ро­ят­ность столк­но­ве­ний мо­ле­кул реа­ген­тов с не­об­хо­ди­мой для осу­ще­ст­в­ле­ния хи­мич. пре­вра­ще­ния энер­ги­ей столк­но­ве­ния. Эта мо­дель да­ёт лишь ка­че­ст­вен­ное со­гла­сие с ки­не­тич. ха­рак­те­ри­сти­ка­ми, оп­ре­де­лён­ны­ми экс­пе­ри­мен­таль­но. Бо­лее на­дёж­ное пред­ска­за­ние ки­не­тич. ха­рак­те­ри­стик эле­мен­тар­ных ре­ак­ций в га­зе пред­ла­га­ет ак­ти­ви­ро­ван­но­го ком­плек­са тео­рия, ос­но­ван­ная на ста­ти­стич. рас­чё­те ве­ро­ят­но­сти про­те­ка­ния ре­ак­ции в ус­ло­ви­ях рас­пре­де­ле­ния Мак­свел­ла – Больц­ма­на. Наи­бо­лее пол­ное опи­са­ние эле­мен­тар­но­го ак­та хи­мич. ре­ак­ции да­ёт тео­ре­тич. мо­дель, рас­смат­ри­ваю­щая хи­мич. пре­вра­ще­ние как пе­ре­ме­ще­ние точ­ки, изо­бра­жаю­щей со­стоя­ние реа­ген­тов, по по­верх­но­сти по­тен­ци­аль­ной энер­гии, ко­то­рая пред­став­ля­ет со­бой за­ви­си­мость по­тен­ци­аль­ной энер­гии реа­ги­рую­щих мо­ле­кул от ко­ор­ди­нат всех вхо­дя­щих в них ато­мов. То­по­ло­гия по­верх­но­сти по­тен­ци­аль­ной энер­гии и оп­ре­де­ляе­мые ею на­прав­ле­ние и ве­ро­ят­ность осу­ще­ст­в­ле­ния ак­та ре­ак­ции мо­гут быть рас­счи­та­ны ме­то­да­ми кван­то­вой хи­мии. Де­таль­ное опи­са­ние про­те­ка­ния эле­мен­тар­но­го ак­та ре­ак­ции в за­ви­си­мо­сти от энер­гии по­сту­па­тель­но­го дви­же­ния и элек­трон­но­го, ко­ле­ба­тель­но­го и др. со­стоя­ний реа­ги­рую­щих мо­ле­кул яв­ля­ет­ся пред­ме­том тео­ре­тич. и экс­пе­рим. изу­че­ния спец. раз­де­ла К. х., ко­то­рый на­зы­ва­ет­ся хи­мич. ди­на­ми­ка.

На­прав­ле­ние и ско­рость хи­мич. ре­ак­ций в жид­кой и твёр­дой фа­зах оп­ре­де­ля­ют­ся не толь­ко хи­мич. при­ро­дой реа­ген­тов, но и влия­ни­ем мо­ле­кул сре­ды. Вслед­ст­вие мень­шей по срав­не­нию с га­зо­вой фа­зой транс­ля­ци­он­ной под­виж­но­стью мо­ле­кул в жид­кой фа­зе ско­рость бы­ст­рых ре­ак­ций час­то оп­ре­де­ля­ет­ся диф­фу­зи­ей мо­ле­кул реа­ген­тов. Осо­бен­но силь­ное влия­ние на на­прав­ле­ние и ско­рость ре­ак­ций ока­зы­ва­ют жид­ко­сти с вы­со­кой ди­элек­трич. про­ни­цае­мо­стью, ко­то­рые об­лег­ча­ют об­ра­зо­ва­ние за­ря­жен­ных час­тиц (ио­нов) и спо­соб­ст­ву­ют про­те­ка­нию ре­ак­ций по ион­но­му ме­ха­низ­му (см. Ре­ак­ции в жид­ко­стях). Eщё мень­шая под­виж­ность мо­ле­кул в твёр­дой фа­зе при­во­дит к то­му, что ско­рость ре­ак­ции час­то оп­ре­де­ля­ет­ся ско­ро­стью про­цес­сов за­ро­ж­де­ния и рос­та фа­зы про­дук­тов ре­ак­ции (см. Ре­ак­ции в твёр­дых те­лах), а на­прав­ле­ние ре­ак­ции – вза­им­ной ори­ен­та­ци­ей мо­ле­кул реа­ген­тов, за­дан­ной струк­ту­рой твёр­до­го те­ла (см. То­по­хи­ми­че­ские ре­ак­ции). В твёр­дых те­лах при темп-ре ни­же 100 К на­блю­да­ет­ся не­обыч­ная за­ви­си­мость ско­ро­сти не­ко­то­рых ре­ак­ций от темп-ры. Это яв­ле­ние, на­зы­вае­мое низ­ко­тем­пе­ра­тур­ным пре­де­лом ско­ро­сти ре­ак­ций, яв­ля­ет­ся од­ним из про­яв­ле­ний кван­то­во­го тун­нель­но­го эф­фек­та в хи­мии.

Для хи­мич. ре­ак­ций, про­те­каю­щих в от­кры­тых сис­те­мах, т. е. в сис­те­мах, на­хо­дя­щих­ся в по­то­ке ве­ще­ст­ва или энер­гии, ха­рак­тер­ны спе­ци­фич. ки­не­тич. за­ко­но­мер­но­сти – мно­же­ст­вен­ность ста­цио­нар­ных со­стоя­ний, ко­ле­ба­тель­ные и хао­ти­че­ские ки­не­тич. ре­жи­мы (см. Ре­ак­то­ры хи­ми­че­ские, Ко­ле­ба­тель­ные ре­ак­ции). При на­ли­чии диф­фу­зии воз­мож­но воз­ник­но­ве­ние ста­цио­нар­ных про­стран­ст­вен­ных струк­тур (струк­ту­ры Тью­рин­га) и дви­жу­щих­ся волн ре­ак­ции. Та­кие про­цес­сы на­зы­ва­ют­ся про­цес­са­ми са­мо­ор­га­ни­за­ции с воз­ник­но­ве­ни­ем про­стран­ст­вен­ных и вре­мен­ны́х дис­си­па­тив­ных струк­тур и яв­ля­ют­ся пред­ме­том ак­тив­но­го меж­дис­ци­п­ли­нар­но­го изу­че­ния. В тех слу­ча­ях, ко­гда хи­мич. ре­ак­ция про­те­ка­ет в при­сут­ст­вии фи­зич. по­лей (вы­со­ко­час­тот­ное и СВЧ-по­ле, ИК-, УФ- и рент­ге­нов­ское об­лу­че­ние, про­ни­каю­щая ра­диа­ция и т. д.), воз­ни­ка­ет не­рав­но­вес­ное за­се­ле­ние вра­ща­тель­ных, ко­ле­ба­тель­ных и элек­трон­ных со­стоя­ний мо­ле­кул и не­ста­биль­ных про­ме­жу­точ­ных час­тиц, ко­то­рое ска­зы­ва­ет­ся на ско­ро­сти и на­прав­ле­нии ре­ак­ции. Тео­ре­тич. мо­де­ли, опи­сы­ваю­щие та­кие про­цес­сы, раз­ви­ва­ют­ся не­рав­но­вес­ной хи­ми­че­ской ки­не­ти­кой и ки­не­ти­кой фи­зи­че­ской и ис­поль­зу­ют­ся в плаз­мо­хи­мии, фо­то­хи­мии, ла­зер­ной хи­мии и др.

Для экс­пе­рим. изу­че­ния ки­не­ти­ки хи­мич. ре­ак­ций ис­поль­зу­ют все из­вест­ные хи­мич. и фи­зич. ме­то­ды ана­ли­за со­ста­ва ре­ак­ци­он­ной сме­си, ча­ще все­го спек­тро­ско­пию в ИК-, ви­ди­мом и УФ-диа­па­зо­нах, хро­ма­то­гра­фич. и масс-спек­тро­мет­рич. ме­то­ды, ме­то­ды ЯМР и ЭПР. Для изу­че­ния бы­ст­рых хи­мич. ре­ак­ций раз­ра­бо­та­ны вре­мя­раз­ре­шён­ные ва­ри­ан­ты спек­тро­ско­пич. ме­то­дов. В ча­ст­но­сти, ме­тод фем­то­се­кунд­но­го им­пульс­но­го фо­то­ли­за по­зво­ля­ет экс­пе­ри­мен­таль­но ис­сле­до­вать про­те­ка­ние эле­мен­тар­но­го ак­та ре­ак­ции с раз­ре­ше­ни­ем до 10–14– 10–15 с. Ре­ше­ние об­рат­ной ки­не­тич. за­да­чи (оп­ре­де­ле­ния ки­не­тич. па­ра­мет­ров из экс­пе­рим. дан­ных) и пря­мой ки­не­тич. за­да­чи (рас­чё­та ки­не­тич. по­ве­де­ния реа­ги­рую­щей сис­те­мы) про­из­во­дит­ся на ЭВМ с ис­поль­зо­ва­ни­ем ме­то­дов вы­чис­лит. ма­те­ма­ти­ки.

Прак­тич. зна­че­ние К. х. свя­за­но с раз­ра­бот­кой прин­ци­пов управ­ле­ния хи­мич. про­цес­са­ми, ме­то­дов сти­му­ли­ро­ва­ния по­лез­ных и тор­мо­же­ния не­же­ла­тель­ных ре­ак­ций пу­тём вы­бо­ра оп­ти­маль­ных кон­цен­тра­ций (дав­ле­ний), темп-ры и фа­зо­во­го со­стоя­ния реа­ген­тов, ка­та­ли­за­то­ров и ин­ги­би­то­ров хи­мич. ре­ак­ций, а так­же фи­зич. воз­дей­ст­вий на реа­ги­рую­щую сис­те­му (свет, ра­диа­ция, плаз­ма и пр.).

Лит.: Кон­д­рать­ев В. Н., Ни­ки­тин ЕЕ. Хи­ми­че­ские про­цес­сы в га­зах. М., 1981; Эй­ринг Г., Лин С. Г., Лин С. М. Ос­но­вы хи­ми­че­ской ки­не­ти­ки. М., 1983; Эма­ну­эль Н. М., Кнор­ре Д. Г. Курс хи­ми­че­ской ки­не­ти­ки. 4-е изд. М., 1984; Де­ни­сов Е. Т., Сар­ки­сов О. М., Лих­тен­штейн Г. И. Хи­ми­че­ская ки­не­ти­ка. М., 2000; Се­ме­нов Н. Н. Цеп­ные ре­ак­ции. М., 2004. Т. 1–2; Франк-Ка­ме­нец­кий Д. А. Ос­но­вы мак­ро­ки­не­ти­ки. Диф­фу­зия и те­п­ло­пе­ре­да­ча в хи­ми­че­ской ки­не­ти­ке. 4-е изд. Дол­го­прудный, 2008.

Вернуться к началу