Подпишитесь на наши новости
Вернуться к началу с статьи up
 

ГЕОФИЗИ́ЧЕСКИЕ МЕ́ТОДЫ РАЗВЕ́ДКИ

  • рубрика

    Рубрика: Физика

  • родственные статьи
  • image description

    В книжной версии

    Том 6. Москва, 2006, стр. 645

  • image description

    Скопировать библиографическую ссылку:




Авторы: О. Л. Кузнецов

ГЕОФИЗИ́ЧЕСКИЕ МЕ́ТОДЫ РАЗВЕ́Д­КИ  (ГМР), ме­то­ды, ис­поль­зую­щие про­стран­ст­вен­но-вре­менны́е из­ме­не­ния гео­фи­зич. по­лей в зем­ной ко­ре для по­ис­ка и раз­вед­ки по­лез­ных ис­ко­пае­мых, кон­тро­ля за экс­плуа­та­ци­ей их ме­сто­ро­ж­де­ний. ГМР на­зы­ва­ют так­же раз­ве­доч­ной или при­клад­ной гео­фи­зи­кой. ГМР тес­но свя­за­ны с об­щей гео­ло­ги­ей, гео­ло­гией полезных ископаемых, гео­хи­ми­ей, гео­тек­то­ни­кой, стра­ти­гра­фи­ей и ми­не­ра­ло­ги­ей. В со­от­вет­ст­вии с по­став­лен­ны­ми за­да­ча­ми вы­де­ля­ют отд. на­прав­ле­ния при­клад­ной гео­фи­зи­ки: глу­бин­ная, неф­те­га­зо­вая, руд­ная и не­руд­ная, ин­же­нер­но-гео­ло­гич., гид­ро­гео­ло­гич., во­ен­ная, мерз­лот­но-гля­цио­ло­гич., ар­хео­ло­гич. и гео­эко­ло­ги­че­ская.

По ви­дам из­ме­ряе­мых по­лей вы­де­ля­ют сле­дую­щие груп­пы ГМР: гра­ви­та­ци­он­ная раз­вед­ка (гра­ви­та­ци­он­ное по­ле); маг­нит­ная раз­вед­ка (маг­нит­ное по­ле); тер­мо­раз­вед­ка (те­п­ло­вое по­ле); элек­три­че­ская раз­вед­ка и элек­тро­маг­нит­ная (ра­дар­ная) съём­ка (элек­трич. и элек­тро­маг­нит­ное по­ля); сейс­ми­че­ская раз­вед­ка и гео­аку­сти­ка (по­ле уп­ру­гих волн); ядер­ная гео­фи­зи­ка (по­ля ней­тро­нов, гам­ма-кван­тов, ней­три­но, по­то­ки тя­жёлых час­тиц).

ГМР ис­поль­зу­ют пас­сив­ные и ак­тив­ные схе­мы из­ме­ре­ний. Пас­сив­ные ме­то­ды ос­но­ва­ны на ре­ги­ст­ра­ции ха­ракте­ри­стик ес­те­ст­вен­ных фи­зич. по­лей (темп-ры, те­п­ло­во­го по­то­ка, ус­ко­ре­ния сво­бод­но­го па­де­ния или си­лы тя­же­сти, ра­дио­ак­тив­но­сти, век­то­ра ин­дук­ции маг­нит­но­го по­ля, ин­тен­сив­но­сти эмис­сии сейс­мич. ак­тив­но­сти). Ак­тив­ные ме­то­ды ис­поль­зу­ют ис­кусств. воз­бу­ж­де­ние мас­си­ва по­род с по­мо­щью ис­точ­ни­ка уп­ру­гих (сейс­мич. или аку­стич.), элек­тро­маг­нит­ных волн, элек­трич. то­ка, по­то­ков ио­ни­зи­рую­щих из­лу­че­ний и ре­ги­ст­ра­цию от­кли­ка гео­ло­гич. сре­ды на по­слан­ное из­лу­че­ние.

Осу­ще­ст­в­ле­ние ГМР вклю­ча­ет три ста­дии: про­ве­де­ние по­ле­вых на­блю­де­ний (из­ме­ре­ний) ха­рак­те­ри­стик фи­зич. по­лей по за­дан­ной се­ти про­фи­лей; ком­пь­ю­тер­ная об­ра­бот­ка ре­зуль­та­тов из­ме­ре­ний с ис­поль­зо­ва­ни­ем спец. про­грамм­но­го обес­пе­че­ния; гео­ло­гич. ин­тер­пре­та­ция ре­зуль­та­тов из­ме­ре­ний, за­клю­чаю­щая­ся в по­строе­нии фи­зи­ко-гео­ло­гич. мо­де­ли изу­чае­мо­го гео­ло­гич. объ­ек­та.

Воз­мож­ность ис­поль­зо­ва­ния ГМР для ре­ше­ния раз­но­об­раз­ных гео­ло­гич. за­дач ос­но­ва­на на кон­крет­ных функ­цио­наль­ных ли­бо кор­ре­ля­ци­он­ных за­ви­си­мо­стях ме­ж­ду зна­че­ния­ми гео­фи­зич. па­ра­мет­ров и ис­ко­мы­ми свой­ст­ва­ми гео­ло­гич. сре­ды. При ре­ше­нии за­дач гео­фи­зич. раз­вед­ки вы­де­ля­ют од­но­род­ные по фи­зич. ха­рак­те­ри­сти­кам слои, ус­та­нав­ли­ва­ют мор­фо­ло­гию их гра­ниц и да­лее, с ис­поль­зо­ва­ни­ем имею­щей­ся гео­ло­гич. ин­фор­ма­ции, ото­жде­ст­в­ля­ют вы­де­лен­ные слои с оп­ре­де­лён­ны­ми ти­па­ми гор­ных по­род, в т. ч. вы­яв­ля­ют уча­ст­ки недр, пред­по­ло­жи­тель­но со­дер­жа­щие те или иные ви­ды по­лез­ных ис­ко­пае­мых.

Тео­рия ГМР ос­но­ва­на на фун­дам. пред­став­ле­ни­ях ме­ха­ни­ки и элек­тро­ди­на­ми­ки сплош­ных сред, тео­рии гра­ви­та­ци­он­но­го и маг­нит­но­го по­лей Зем­ли, тео­рии ко­ле­ба­ний и волн. При ре­ше­нии гео­фи­зич. за­дач неф­тя­ной и га­зо­вой гео­ло­гии важ­ную роль иг­ра­ют зна­ния фи­зи­ки по­рис­тых и тре­щи­но­ва­тых флюи­до­на­сы­щен­ных сред.

Гео­фи­зич. ис­сле­до­ва­ния ос­но­ва­ны на ре­ше­нии т. н. пря­мых и об­рат­ных за­дач гео­фи­зи­ки. Под пря­мой за­да­чей под­ра­зу­ме­ва­ют тео­ре­тич. или экс­пе­рим. оцен­ку ре­ак­ции сре­ды с за­ра­нее за­дан­ны­ми фи­зич. свой­ст­ва­ми и гео­мет­рич. ха­рак­те­ри­сти­ка­ми на по­слан­ный в неё сиг­нал. При ре­ше­нии пря­мых за­дач ши­ро­ко ис­поль­зу­ют ап­па­рат ма­те­ма­тич. фи­зи­ки, чис­лен­ные ме­то­ды ма­те­ма­тич. мо­де­ли­ро­ва­ния, в т. ч. ме­тод ко­неч­ных раз­но­стей, ко­неч­ных эле­мен­тов, ме­тод Мон­те-Кар­ло и др. Ре­ше­ние об­рат­ной за­да­чи гео­фи­зи­ки со­сто­ит в оп­ре­де­ле­нии гео­мет­рии и свойств гор­ных по­род, на­хо­дя­щих­ся в пре­де­лах изу­чае­мо­го объ­ек­та на ос­нове ана­ли­за из­ме­рен­но­го гео­фи­зич. по­ля, т. е. по ре­зуль­та­там экс­пе­ри­мен­та. Ма­те­ма­тич. ап­па­рат, ис­поль­зуе­мый для ре­ше­ния об­рат­ных за­дач гео­фи­зи­ки, вклю­ча­ет тео­рию по­тен­циа­лов, тео­рию вол­но­вых яв­ле­ний и др. На прак­ти­ке об­рат­ные за­да­чи ре­ша­ют, при­ме­няя спе­циа­ли­зир. про­грамм­ное обес­пе­че­ние.

Де­таль­ность ис­сле­до­ва­ний недр Зем­ли с по­мо­щью совр. ап­па­ра­ту­ры во мно­гом за­ви­сит от ис­поль­зуе­мых тех­но­ло­гий. Так, глу­би­на ис­сле­дуе­мо­го слоя ко­леб­лет­ся от мет­ров до де­сят­ков ки­ло­мет­ров. По­ле­вые гео­фи­зич. из­ме­ре­ния про­во­дят с по­мо­щью спец. ап­па­ра­ту­ры, вклю­чаю­щей бло­ки элек­трон­но­го управ­ле­ния, ис­точ­ни­ки из­лу­че­ния сиг­на­лов, де­тек­то­ры (при­ём­ни­ки) сиг­на­лов, бор­то­вые вы­чис­лит. ма­ши­ны для пред­ва­рит. об­ра­бот­ки ин­фор­ма­ции. Совр. гео­фи­зич. ап­па­ра­ту­ра раз­ме­ща­ет­ся на спец. ав­то­мо­би­лях, н.-и. мор­ских или реч­ных су­дах, вер­то­лё­тах, са­мо­лё­тах, а так­же на бор­ту оби­тае­мых и не­оби­тае­мых ор­би­таль­ных кос­мич. стан­ций.

Спец. и весь­ма эф­фек­тив­ной тех­но­ло­ги­ей изу­че­ния Зем­ли яв­ля­ют­ся гео­фи­зи­че­ские ис­сле­до­ва­ния сква­жин. Ап­па­ра­ту­ра для та­ких ис­сле­до­ва­ний вклю­ча­ет, кро­ме на­зем­ных элек­трон­ных бло­ков, спец. глу­бин­ные при­бо­ры (зон­ды), опус­кае­мые на за­дан­ную глу­би­ну с по­мо­щью гео­фи­зич. ка­бе­ля. При соз­да­нии гео­фи­зич. ап­па­ра­ту­ры ис­поль­зу­ют­ся вы­со­ко­проч­ные ком­по­зит­ные ма­те­риа­лы, ле­ги­ро­ван­ные ста­ли, тер­мо­стой­кие ре­зи­ны и пла­сти­ки, а так­же про­грам­ми­руе­мые ло­гич. мик­ро­элек­трон­ные схе­мы.

Спец. из­ме­ри­тель­ные сис­те­мы соз­да­ют­ся для по­ле­вой (на­зем­ной), мор­ской (см. Мор­ская гео­фи­зи­че­ская раз­вед­ка), аэ­ро­кос­мич. (см. Аэ­ро­гео­фи­зи­че­ская съём­ка), сква­жин­ной гео­фи­зи­ки и шахт­но-руд­нич­ной гео­фи­зи­ки.

ГМР яв­ля­ют­ся важ­ней­шей со­став­ной ча­стью тех­но­ло­гии всех ста­дий гео­ло­го-раз­ве­доч­но­го про­цес­са и слу­жат ин­фор­мац. ос­но­вой для его оп­ти­ми­за­ции. При­ме­не­ние тех или иных ме­то­дов за­ви­сит от кон­крет­ных гео­ло­гич. за­дач. Так, при ре­гио­наль­ном изу­че­нии глу­бин­ных зон зем­ной ко­ры эф­фек­тив­но ис­поль­зу­ют­ся аэ­ро­кос­мич., мор. и глу­бин­ные по­ле­вые ме­то­ды раз­вед­ки. При по­ис­ках ме­сто­рож­де­ний пре­об­ла­да­ет ком­плекс­ное ис­поль­зо­ва­ние по­ле­вых ме­то­дов (сейс­мич. раз­вед­ка, элек­трич. раз­вед­ка и др.). Ко­неч­ная цель дан­ной ста­дии – оп­ре­де­ле­ние мест за­ло­же­ния сква­жин, про­гноз строе­ния гео­ло­гич. раз­ре­за и кон­ту­ров ме­сто­ро­ж­де­ний. На ста­дии оцен­ки мес­то­ро­ж­де­ний и под­счё­та за­па­сов ши­ро­ко при­ме­ня­ют­ся гео­фи­зич. ис­сле­до­ва­ния сква­жин. Ра­цио­наль­ным яв­ля­ет­ся так­же со­вме­ст­ное ис­поль­зо­ва­ние ГМР и гео­хи­мич. ме­то­дов раз­вед­ки.

Пе­ре­ход гео­ло­гич. раз­вед­ки во всё бо­лее слож­ные гео­ло­го-гео­фи­зич. ус­ло­вия (боль­шие глу­би­ны, вы­со­кие темп-ры и дав­ле­ния и др.) тре­бу­ет соз­да­ния бо­лее со­вер­шен­ных тех­но­ло­гий. Раз­ра­ба­ты­ва­ют­ся мно­го­функ­цио­наль­ные ком­плекс­ные и ком­би­нир. при­бо­ры, а так­же прин­ци­пи­аль­но но­вые ме­то­ды гео­фи­зич. ис­сле­до­ва­ний, ос­но­ван­ные на эф­фек­тах пре­об­ра­зо­ва­ния разл. фи­зич. по­лей, в т. ч. на не­ли­ней­ных фи­зич. явле­ни­ях. Соз­да­ют­ся но­вые гео­фи­зич. тех­но­ло­гии, ис­поль­зую­щие управ­ляе­мое воз­дей­ст­вие на гео­ло­гич. сре­ду и на­блю­де­ния в ре­жи­ме мо­ни­то­рин­га со­стоя­ния уча­ст­ков недр.

Историческая справка

Пер­вые идеи о воз­мож­но­сти при­ме­не­ния гео­фи­зич. (сейс­мич. и маг­нит­ных) на­блю­де­ний для ре­ше­ния при­клад­ных за­дач гео­ло­гии бы­ли вы­ска­за­ны в 18 в. М. В. Ло­мо­но­со­вым, К. Га­ус­сом, Ш. Ку­ло­ном и др. В кон. 19 в. Л. фон Эт­вёш изо­брёл гра­ви­та­ци­он­ный ва­рио­метр, по­лу­чив­ший при­ме­не­ние в раз­вед­ке по­лез­ных ис­ко­пае­мых. В 1906–16 Д. В. Го­лу­бят­ни­ков впер­вые вы­пол­нил тем­пе­ра­тур­ные из­ме­ре­ния в неф­тя­ных сква­жи­нах для ре­ше­ния ря­да гео­ло­гич. и неф­те­про­мы­сло­вых за­дач. В те же го­ды Б. Б. Го­ли­цын, один из ос­но­ва­те­лей сейс­мо­ло­гии, скон­ст­руи­ро­вал и вне­д­рил в прак­ти­ку элек­тро­ди­на­мич. сейс­мо­граф. На­ча­ло ши­ро­ко­го при­ме­не­ния гео­фи­зич. ис­сле­до­ва­ний сква­жин свя­за­но с ра­бо­та­ми франц. учёных К. и М. Шлюм­бер­же, пред­ло­жив­ших и впер­вые вне­дрив­ших в неф­те­раз­вед­ку ме­тод элек­трич. со­про­тив­ле­ния (1926–28). Осн. за­слу­га в соз­да­нии совр. гео­фи­зич. тех­но­ло­гий при­над­ле­жит рос., франц., амер. и ка­над­ской шко­лам раз­ве­доч­ной гео­фи­зи­ки.

Лит.: Куз­не­цов О. Л., Сим­кин Э. М. Пре­об­ра­зо­ва­ние и взаи­мо­дей­ст­вие гео­фи­зи­че­ских по­лей в ли­то­сфе­ре. М., 1990; Хме­лев­ской В. К. Гео­фи­зи­че­ские ме­то­ды ис­сле­до­ва­ния зем­ной ко­ры. Дуб­на, 1997–1999. Кн. 1–2; Бон­да­рен­ко В. М., Де­му­ра Г. В., Са­вен­ко Е. И. Об­щий курс раз­ве­доч­ной гео­фи­зи­ки. М., 1998.

Вернуться к началу