СИ́МВОЛЬНОЕ МОДЕЛИ́РОВАНИЕ

Авторы: В. Д. Ильин

СИ́МВОЛЬНОЕ МОДЕЛИ́РОВАНИЕ (s-моделирование) [англ. symbol modeling (s-modeling)], раздел информатики, предметом которого является моделирование произвольных объектов в человеко-машинной среде на основе систем визуальных, аудио- и др. символов [см. Символ в информатике (s-символ)]. S-моделирование изучает системы символов и соответствующие им системы кодов [см. Код в информатике (s-код)], методы построения, сохранения, накопления, поиска и передачи с помощью программируемых машин (компьютеров, цифровых камер и др.) s-моделей природных и изобретаемых объектов.

Инструмент интеллектуальной деятельности

S-моделирование служит средством поддержки интеллектуальной деятельности в человеко-машинной среде (s-среде). S-модель объекта изучается как отображение в s-среду, выполненное при заданных ограничениях, соответствующих планируемому применению s-модели (напр., цифровое фото – отображение визуального объекта, сделанное с заданным разрешением; программа решения некоторой задачи – отображение выбранного метода решения, учитывающего заданную совокупность ограничений). При этом не предполагается никаких ограничений на виды и типы заменяемых s-символами объектов: они могут иметь любую физическую сущность, размещение, происхождение и назначение. S-символы одного вида могут заменять s-символы другого (напр., визуальные символы могут заменять аудиосимволы). S-модели объектов, рассчитанные на применение в научной и образовательной деятельности, представлены моделями систем понятий и систем знаний.

Доминирующая роль s-моделей во всех областях интеллектуальной деятельности определяется не только их компактностью и выразительностью, но и тем, что не существует ограничений на типы носителей, применяемых для их хранения. Носителями могут быть память человека, матрица цифровой фотокамеры, память цифрового диктофона и др. Затраты на построение, копирование, передачу, сохранение и накопление s-моделей несопоставимо меньше, чем аналогичные затраты, связанные с несимвольными моделями (например, макетами судов, зданий и др.). Примерами s-моделей могут служить электронные карты, видеоклипы, чертежи машин, записи музыкальных композиций и т. д.

S-моделирование широко применяется для моделирования объектов, изучаемых в физике, химии, науках о Земле, робототехнике, медицине (напр., компьютерная томография) и других областях науки и техники. Служит эффективным средством совершенствования сложных человеко-машинных систем в экономике, военном деле, государственном управлении и др. Способствует развитию систем автоматизированного проектирования (САПР), сокращает сроки изобретения и повышает качество новой техники и технологий. Напр., цифровые 3D-модели физических объектов используются для послойного формирования моделируемых объектов с применением 3D-принтеров, обеспечивающих быстрое и малозатратное изготовление прототипов физических моделей и готовых объектов [деталей и узлов машин, форм для литейного производства, строительных конструкций, имплантантов (фрагментов костей, хрящевых тканей и др.) и др.]. Цифровые модели для 3D-печати могут быть созданы с помощью САПР, 3D-сканера или обычной цифровой камеры и фотограмметрического программного обеспечения.

S-моделирование, являясь средством описания смыслов, представленных системами понятий и знаний, не только сопровождает абстрактное мышление, но и служит инструментом его совершенствования. Компактность и выразительность символьных моделей позволяют эффективно сочетать детализацию и обобщение в процессе рассуждений. S-модели изучаемых объектов – испытанный инструментарий механизма ассоциаций, от продуктивности которого зависят судьбы изобретений и научных открытий.

Основные понятия

Теория s-моделирования является методологической платформой построения связанных между собой систем понятий и знаний, относящихся к предметным областям информатики, физики, математики, биологии и других наук. Построенные системы рассчитаны на применение при проектировании компьютеров, смартфонов и др. программируемых машин (s-машин) и s-среды, а также при информатизации различных видов деятельности (научной, инженерной, экономической и др.).

Научное обеспечение развития s-среды и реализуемых на её основе информационных технологий представлено в виде связанных между собой методологических комплексов решения базовых задач s-моделирования и физико-технического воплощения s-машин и s-среды. Результаты первого комплекса служат основанием разработок систем символов и кодов; языков спецификаций, запросов и программирования; архитектур s-машин и соответствующих им систем машинных команд; ассемблеров, компиляторов и интерпретаторов; операционных систем и библиотек программ; редакторов (текстовых, графических, аудио и видео) и инструментальных систем программирования (см. Инструментальная система в информатике); типов и структур данных, систем управления базами данных (СУБД); систем памяти, накопителей и поисковых систем; сетевых архитектур (см. Компьютерная сеть), протоколов и технологий обмена сообщениями; методов и технологий информационной безопасности.

TSM-комплекс средств описания s-моделей 

TSM-комплекс средств описания s-моделей (сокр. англ. Textual Symbol Modeling) – расширяемый набор средств унифицированного текстового описания s-моделей. Включает средства одноуровневой записи формул (без применения редакторов формул), выделения частей гипермедийных (см. Мультимедиа) описаний s-моделей и замены выбранными сокращениями часто повторяющихся фрагментов. Одноуровневые TSM‑описания соответствуют стилю, принятому в языках программирования. Для выполнения описаний достаточно стандартной клавиатуры и набора шрифтов, имеющихся в составе текстовых редакторов Word (пакета MS Office), Pages (пакета iWork), Writer (пакетов LibreOffice или OpenOffice), или др.

Предусмотрены средства выделения определений, замечаний, примеров, имён понятий и отдельных частей описания [напр., □ <фрагмент описания> □ ≈ определение (символ ≈ заменяет слово «означает»); ◊ <фрагмент описания> ◊ ≈ замечание; О <фрагмент описания> О ≈ пример].

Символы, коды, сигналы

□ S-символ (англ. s-symbol) – заменитель природного или изобретённого объекта, обозначающий этот объект и являющийся элементом определённой системы построения символьных сообщений (текстов, нотных записей или др.) в s-среде, рассчитанных на восприятие человеком или роботом. 

□ S-код (англ. s-code) является заменителем s-символа или символьного сообщения, используемым для их представления в s-машинах и предназначенным для построения, сохранения, передачи и интерпретации символьных сообщений в s-среде. 

О В таблице показаны графические символы планет солнечной системы, применяемые астрономами при изготовлении электронных документов, и соответствующие им коды стандарта Юникод (англ. The Unicode Standard). О

Графические символы планет солнечной системы

Название планетыСимволКод
Меркурий ☿ U+263F
Венера ♀ U+2640
Земля ♁ U+2641
Марс ♂ U+2642
Юпитер ♃ U+2643
Сатурн ♄ U+2644
Уран ♅ U+2645
Нептун ♆ U+2646

□ S-сигнал (англ. s-signal) – физически реализованное (в виде композиций значений электрического напряжения, частоты или др.) представление s-кода, рассчитанное на распознавание и интерпретацию аппаратным средством s-машины (микропроцессором, видеоконтроллером или др.). 

Типизация моделируемых объектов

 Тип X ≈ множество X, элементы которого имеют фиксированные набор атрибутов и семейство допустимых операций. Может иметь подтипы, называемые специализациями типа X, и надтипы, называемые обобщениями типа X

□ Специализация типа X – порождение подтипа X[::rule] (здесь сдвоенное двоеточие «::» — символ специализации) с семейством связей, расширенным добавлением связи rule. Выделяет подмножество X [::rule] множества X. Специализацией называют и результат X[::rule] этого порождения (X > X [::rule]). 

Специализация типа, заданная последовательностью добавленных связей X[::(rule1)::rule2], – специализация типа X[::rule1] по связи rule2. Число специализирующих связей в последовательности не ограничено. При этом имена связей, предшествующие последнему, заключены в круглые скобки, а перед открывающей скобкой каждой пары скобок – сдвоенное двоеточие.

□ Обобщение типа Z – это порождение его надтипа Z[#rule] путём ослабления (здесь # – символ ослабления) связи rule из семейства связей, соответствующей типу Z. Исключение связи считают её предельным ослаблением. 

Сообщение

□ S-сообщение (англ. s-message) – конечная упорядоченная совокупность s-символов, рассчитанная на распознавание и интерпретацию получателем-человеком, или её s-код, удовлетворяющий требованиям решения базовых задач s-(представления, преобразования, распознавания, конструирования, интерпретации, обмена, сохранения, накопления, поиска и защиты) в s-среде. 

О S-модели систем понятий и систем знаний, в которых представлены результаты изучения некоторых сущностей (объектов исследований); программы, определяющие поведение s-машин; веб-страницы [см. Веб (Всемирная паутина)] и файлы документов – всё это s-сообщения. О

В s-среде люди с помощью s-машин формируют s-сообщения, представляя их на языках запросов, программирования и др.; выполняют различные преобразования [О из аналоговой формы в цифровую и обратно; из несжатой в сжатую и обратно; из одной формы представления документа в другую (О *.doc в *.pdf О) О]; распознают, используют s-сообщения для конструирования новых s-сообщений (программ, документов и др.); интерпретируют на моделях систем понятий (которые хранятся в памяти интерпретатора также в форме s-сообщений); обмениваются s-сообщениями [используя при этом программно-аппаратно реализованные системы правил (сетевые протоколы, см. Компьютерная сеть); сохраняют и накапливают s-сообщения (создавая электронные библиотеки, энциклопедии и др. информационные ресурсы), занимаются решением задач поиска и защиты s-сообщений.

Модель системы понятий

□ S-модель ca системы понятий – это пара <memsc ≈ память модели sc системы sC понятий>, <rel(memsc) ≈ семейство связей, заданных на memsc> (где sc – помета). 

□ Определение системы понятий – описание её s-модели, сопровождаемое указанием области применимости.

Описание представлено в форме сообщения, рассчитанного:

  • на интерпретацию научным сообществом;
  • представление, сохранение, распространение, накопление и поиск в s-среде. 

 

Определение системы понятий должно удовлетворять необходимым требованиям конструктивности:

  • представление в виде пары <определение области применимости>, <s-модель системы понятий>;
  • в систему понятий, считающуюся определённой, не должны входить понятия, не имеющие определений (и при этом не относящиеся к понятиям-аксиомам).

 

□ Определение области применимости модели – описание типов:

  • корреспондента (кому адресовано определение);
  • цели, в процессе достижения которой определение имеет смысл (классы задач, при изучении которых определение может быть полезно);
  • стадии, на которой целесообразно использовать определение (концепция, методология решения и т. д.). □

 

Область применимости модели может принадлежать совокупности областей, в которых исследуются природные объекты, или к совокупности областей, в которых изучаются изобретаемые объекты.

О Элементарным примером системы понятий с разрешимыми задачными связями между элементами памяти является система понятий треугольник, в которой стороны a, b, c, периметр p и т. д. – элементы памяти; а связи p = a + b + c и др. – элементы семейства связей. О

О trtr[::angle=π/2]: тип tr системы понятий прямоугольный треугольник – специализация типа tr треугольник путём добавления связи angle=π/2 (выделяет из множества треугольников подмножество тех, у которых величина одного из углов равна π/2). О

О message[::(interface=hm)::means=tauch] – это специализация типа message[::interface=hm], определяющего множество сообщений, соответствующих интерфейсу (см. Интерфейс в информатике) человек – s-машина, по связи means=touch, выделяющей множество сообщений, вводимых в s-машину посредством прикосновений (О пальцами рук к клавишам клавиатуры или сенсорному экрану О). 

modelingsymbol modeling[#tools] – моделирование (modeling) можно рассматривать как обобщение типа символьное моделирование (symbol modeling) исключением связи tools (средства моделирования). O

Информация

□ S-информация (англ. s-information) – результат интерпретации сообщения на модели системы понятий. Для извлечения информации из сообщения необходимо иметь: принятое сообщение, представленное в форме, рассчитанной на распознавание и интерпретацию получателем сообщения; хранящиеся в памяти модели систем понятий, среди которых – необходимая для интерпретации принятого сообщения; механизмы поиска необходимой модели, интерпретации сообщения, представления результата интерпретации в виде сообщения и записи его в память. 

O Экранное представление веб-страницы, рассчитанное на восприятие человеком, – результат интерпретации сообщения, полученного браузером от веб-сервера [см. Веб (Всемирная паутина)]. O

Модель системы знаний

□ S-модель системы знаний – триада <ca ≈ s-модель системы Sc понятий>, <setlng ≈ s-модель совокупности языков сообщений, интерпретируемых на ca>, <setintr ≈ s-модель совокупности интерпретаторов на ca сообщений, составленных на языках из setlng>. 

Интерпретация сообщения на модели ca:

1. построение выходного сообщения (извлечение информации) по заданному входному (сообщения представлены на языках из совокупности setlng);

2. анализ выходного сообщения (требуются ли изменения в модели ca);

3. если требуется, то изменение модели ca; если нет – завершение.

O Онлайн-сервис построения маршрутов (http://meganavigator.com/) основан на системе навигационных знаний. O

S-моделирование задач

Представление связей между понятиями в виде разрешимых задач – необходимое условие построения количественных s-моделей систем понятий.

□ S-задача – это четвёрка {Formul, Rulsys, Alg, Prog}, где Formul – постановка задачи; Rulsys – множество систем обязательных и ориентирующих правил решения задачи, поставленных в соответствие Formul; Alg – объединение множеств алгоритмов, каждое из которых соответствует одному элементу из Rulsys; Prog – объединение множеств программ, каждое из которых поставлено в соответствие одному из элементов Alg. Постановка задачи Formul – пара {Mem, Rel}, где Mem – множество понятий задачи, на котором задано разбиение Mem= Inp Out (Inp Out= 0) и совокупность Rel связей между понятиями, определяющая бинарное отношение Rel< Inp*Out. Множество Mem называют памятью задачи, а Inp и Out – её входом и выходом, значения которых предполагается соответственно задавать и искать. 

Для каждого элемента из Rulsys, Alg и Prog задано описание применения. Описания применения элементов Rulsys включают спецификацию типа решателя задачи (автономная s-машина, сетевая кооперация s-машин, кооперация человек–s-машина и др.); требование к информационной безопасности и др. Описания применения элементов из Alg включают данные о допустимых режимах работы решателя задачи (автоматический локальный, автоматический распределенный, интерактивный локальный и др.), о требованиях к полученному результату и др. Описания применения программ включают данные о языках реализации, операционных системах и др.

◊ Каждая программа сопровождается ссылками на наборы тестовых примеров. 

В общем случае множества Rulsys, Alg и Prog могут быть пустыми: числа их элементов зависят от степени изученности задачи.

□ S-алгоритм – система правил решения задачи (соответствующая одному из элементов Rulsys), позволяющая за конечное число шагов поставить в однозначное соответствие заданному набору данных, принадлежащему Inp, результирующий набор, принадлежащий Out

□ S-программа – реализованный (на языке программирования высокого уровня, машинно-ориентированном языке и/или в системе машинных команд) s-алгоритм, представленный в форме сообщения, определяющего поведение s-машинного решателя задачи с заданными свойствами. Существует в символьном, кодовом и сигнальном воплощениях, связанных отношениями трансляции.

□ S-данные – s-сообщение, необходимое для решения некоторой задачи или совокупности задач, представленное в форме, рассчитанной на распознавание, преобразование и интерпретацию решателем (программой или человеком). Специализация s-сообщения (s-message) по параметру получатель s-сообщения (s-recipient), значением которого является решатель s-задачи (s-solver): s-datas-message[::s-recipient=s-solver] (см. Данные). 

Конструирование s-задач

Связи по памяти между s-задачами определяются тремя типами функций, каждая из которых является функцией двух аргументов и позволяет поставить в соответствие паре s-задач некоторую третью s-задачу, образованную из этой пары.

□ S-задача a связана с s-задачей b по памяти, если существует хотя бы одна пара элементов {elem Mema, elem Memb}, принадлежащих памяти Mema s-задачи a и памяти Memb s-задачи b, относительно которой определено общее означивание (элементы имеют одно и то же множество значений). Если S и H – множества s-задач и DS*S и каждой паре (si, sj) элементов из D ставится в соответствие определённый элемент из H, то задана функция связи по памяти h = conn(si, sj). При этом D называют областью определения функции conn и обозначают Dconn. Множество R={h: elem H; h=conn(si, sj); si: elem Dconn, sj: elem Dconn} называют областью значений функции conn

Тип связи зависит от содержимого пересечения по памяти: составлена ли связь из элементов выхода одной и входа другой задачи; из элементов выходов задач или из элементов их входов; или же связь получена путём комбинации предыдущих способов. Элементарная задачная конструкция – задачная пара. Любая задачная конструкция, в свою очередь, может быть использована как составляющая ещё более сложной задачной конструкции.

□ Cистема pS знаний о задачных конструктивных объектах (называемых также p-объектами) – это триада <pA, lng, intr>, где pA – задачная область, lng – язык спецификации p-объектов, intr – интерпретатор спецификаций искомых p-объектов на pA. Если P – множество всех p-объектов, а A < P – его непустое подмножество, при этом в A (содержащем не менее двух элементов) не существует ни одного элемента, который не был бы связан по памяти хотя бы с одним элементом из A, то s-модель pa задачной области pA – это p-объект, который задаётся парой <память memA множества задач A задачной области pA>, <семейство rul(memA) связей, заданных на memA>. Непустое множество memA элементов памяти разбито на три подмножества: входов inpA задач, выходов outA задач и подмножество orA, каждый из элементов которого является и входом, и выходом некоторых задач. Любое одно из этих подмножеств может быть пустым; могут быть одновременно пустыми inpA и outA

В отличие от памяти задачи, состоящей из входа и выхода, память задачной области содержит подмножество or элементов памяти, каждый из которых может быть или задан (как входной), или вычислен (как выходной). Такие элементы памяти называют обратимыми, а or– подмножеством обратимых элементов. Подмножество inp называют подмножеством задаваемых, а подмножество out подмножеством вычисляемых элементов.

S-модель pa задачной области pA служит для интерпретации составленных на языке lng спецификаций искомых задач. Интерпретация заключается в постановке в соответствие некоторому подмножеству (или паре подмножеств) памяти memA некоторой подобласти задачной области pA, названной разрешающей структурой. Интерпретация спецификации искомого p-объекта на pA – конструктивное доказательство существования разрешающей структуры.

□ Задачный граф – представление задачной области, рассчитанное на реализацию процесса p-конструирования и формализацию задачных знаний. Множество вершин графа, составленное из задачных объектов, называется задачным базисом графа и обозначается p-basis. Ребро задачного графа – это пара вершин с непустым пересечением по памяти. Нагрузка ребра определяется множеством всех пар элементов памяти, входящих в это пересечение. Каждая вершина графа имеет память. Память вершины – это память задачи (или задачной области), которую представляет вершина. 

□ Составная задача comp – подобласть задачной области pA, которая содержит не менее двух элементов из множества задач A и на памяти которой задано разбиение: memcomp = inpcomp U outcomp; inpcomp^outcomp = 0, определяющее вход inpcomp и выход outcomp составной задачи. Составной задаче поставлен в соответствие ориентированный граф, вершинами которого являются задачи. Каждая вершина помечена именем задачи. Рёбра графа  это пары задач с непустыми пересечениями по памяти. 

В зависимости от состава вершин определены следующие типы задачных графов: U-граф имеет множество вершин только из простых задач; в C-графе хотя бы одна вершина представлена составной задачей и нет вершин, представляющих собой задачную область; в G-графе  не менее одной вершины представлено задачной областью (остальные могут быть простыми и составными задачами).

Разрешающие структуры на задачных графах

G-графы служат средством формализации знаний о p-объектах. Система знаний об s-задачах обеспечивает процессы p-(специализации, конкретизации и конструирования).

◊ Возможность существования в задачном графе одного или нескольких узлов, являющихся задачными областями, имеет принципиальное значение для формализации задачных знаний. 

Искомая конструкция задаётся спецификацией задачи, содержащей описание её памяти, ограничений на число задачных узлов (и, если необходимо, ограничений, связанных с размером задачи, точностью результата и др.). Заданное описание интерпретируется на задачном графе, который служит представлением интересующей конструктора задачной области. Средством интерпретации спецификаций задач служит механизм конструирования на задачном графе.

Интерпретация на U-графе в процессе задачного конструирования заключается в постановке в соответствие подмножеству (или паре подмножеств) элементов его памяти такого подграфа, память которого находилась бы в заданном отношении к введённому подмножеству (или паре подмножеств). Интерпретации на C-графе и G-графе аналогичны интерпретации на U-графе.

□ Задача представима на задачном графе graph, если её вход inpt содержится в подмножестве Givgraph U Or graph, а выход outt – в подмножестве Computgraph U Orgraph памяти задачного графа; при этом существует не менее одной задачи из базиса графа, вход которой содержится в inpt или совпадает с ним. 

□ Разрешающей структурой solvt на графе graph, поставленной в соответствие некоторой задаче t, называется подграф c минимальным числом задачных вершин, на котором задача t представима. 

Интерпретация задачного узла U-графа (или С-графа) в процессе поиска разрешающей структуры заключается в соотнесении означенности входа и выхода.

Правила интерпретации задачного узла:

•         если полностью означен вход, то полностью означен и выход;

•         если означенным полагается хотя бы один элемент выхода, то означенным полагается полностью вход.

Механизм построения разрешающих структур ставит в соответствие спецификации исходной задачи подграф на задачном графе путём реализации трёх типов поведения в соответствии с тремя типами запросов на конструирование.

1. Для заданных подмножеств x и y (x □ y = 0) памяти memt­-graph, тогда существует разрешающая структура solv xy (здесь xy  помета) с минимальным числом задачных вершин, вход которой определён посредством x, а выход  посредством y, когда найдётся подграф G, множество вершин которого включает хотя бы одну вершину с разрешимой задачей, а объединение выходов вершин подграфа G содержит подмножество y (или совпадает с ним).

2. Для подмножества x, заданного на памяти memt-­graph задачного графа, тогда найдётся разрешающая структура solvx (x  помета), вход которой определён подмножеством x, а выход является непустым подмножеством памяти графа, включающим максимальное число элементов, которые могут быть определены при заданном x, когда x  Comput = 0 (Comput < memt­-graph) и найдётся хотя бы одна вершина с разрешимой задачей.

3. Для подмножества y, заданного на memt-­graph, тогда найдётся разрешающая структура solvy с минимальным числом задачных вершин, выход которой содержит y, а вход составлен из элементов, принадлежащих Giv, когда y  Giv = 0.

Для каждого из трёх типов запросов получено конструктивное доказательство существования разрешающей структуры соответствующего типа. После того как найдена разрешающая структура, становится осуществимым процесс её конкретизации в соответствии со спецификацией условий применения исходной задачи.

Классы базовых задач s-моделирования

На основании изучения свойств и закономерностей s-моделирования определены классы базовых задач s-моделирования.

S-представление

Представление моделей произвольных объектов, рассчитанных на восприятие человеком и s-машинами, связано с изобретением языков s-сообщений, удовлетворяющих определённым требованиям. В этом классе изучаются системы символов и кодов, используемые соответственно в человеко- и s-машинно-ориентированных языках. К первым относим языки спецификации, программирования, запросов, ко вторым – системы s-машинных команд. Этот класс включает также задачи представления s-данных. В него входят задачи представления моделей систем понятий, на которых интерпретируются сообщения. На верхнем уровне задачной иерархии этого класса находится представление моделей систем знаний.

S-преобразование

Преобразование типов и форм представления s-моделей позволяет устанавливать соответствия между моделями. Задачи преобразования типов (О речевой в текстовый и обратно и др. О) и форм (О аналоговой в цифровую и обратно; несжатой в сжатую и обратно; одной формы представления документа в другую: *.doc в *.pdf  О) – необходимое дополнение к задачам представления моделей.

S-распознавание

Распознавание сообщения предполагает необходимость его представления в формате, известном получателю. При выполнении этого условия для распознавания сообщения решаются задачи сопоставления с моделями-образцами либо сопоставления свойств распознаваемой модели со свойствами моделей-образцов.

S-конструирование

Задачи конструирования моделей систем понятий, языков, систем знаний, интерпретаторов сообщений на моделях систем понятий; моделей задач, программирования, взаимодействия в s-среде; моделей архитектур s-машин, s-сетей, сервис-ориентированных архитектур; моделей сообщений и средств их построения, документов и документооборота. На верхнем уровне иерархии этого класса находятся задачи конструирования моделей s-среды и технологий s-моделирования.

S-интерпретация

Интерпретация s-сообщений предполагает существование принятого сообщения, модели системы понятий, на которой оно должно интерпретироваться, и механизма интерпретации.

 О Для микропроцессора s-машины сообщениями, подлежащими интерпретации, служат коды s-машинных команд и данных. О

S-обмен

В этом классе изучаются задачи взаимодействия в s-среде (человек – машина; машина – машина) с типизацией: отправителей и получателей; средств отправки, передачи и получения сообщений; сред передачи сообщений. Изобретаются системы правил обмена сообщениями (s-сетевые протоколы); архитектуры s-сетей, сервис-ориентированные архитектуры; системы документооборота.

S-(сохранение, накопление и поиск)

Этот класс включает связанные между собой задачи сохранения, накопления и поиска. Изучаются и типизируются: память и накопители, механизмы управления ими; формы сохранения и накопления; носители, методы сохранения, накопления и поиска; базы данных и библиотеки программ. Изучаются модели предмета поиска (по образцу, по признакам, по описанию свойств) и методов поиска.

S-защита

Задачи этого класса включают: предотвращение и обнаружение уязвимостей; контроль доступа; защиту от вторжений, вредоносных программ, перехвата сообщений и несанкционированного применения.

Развитие и перспективы

Многовековой процесс изобретения символов (жестовых, графических и др.) и построенных из них сообщений, представление и накопление символьных сообщений во внешней среде является ключевым средством формирования и развития разумного человека. Создание звуковых, жестовых и других средств s-моделирования смыслов, вызванное потребностями сообщать об опасности, размещении объектов охоты и других объектах наблюдения, способствовало совершенствованию механизмов познания, взаимопонимания и обучения. Важным этапом в развитии s-моделирования стало формирование языков сообщений на основе звуковых и жестовых символов.

На определённом этапе задумались об s-моделях, допускающих их хранение, копирование и передачу. Важным событием в развитии s-моделирования стали двумерные графические модели (в виде рисунков) при уже освоенном изготовлении трёхмерных (в виде лепных и резных фигурок). Особая роль принадлежит графическим моделям, обозначающим некоторые ситуации, свойства предметов и другие объекты, не имеющие видимых прообразов в окружающей среде.

Переход от примитивных рисунков с натуры к изображениям того, что выдаёт сознание, приблизил изобретение графических схем. Это повлияло на развитие жесто-звуковых средств построения сообщений и способствовало возникновению речи, ставшей важным средством создания и передачи сообщений. Стремление повысить эффективность пояснений, сопровождающих показ, приводило к совершенствованию понятийного аппарата и средств его речевого воплощения.

Потребность в количественных оценках при обмене (охотничьей добычей, плодами земледелия, орудиями охоты и труда, изделиями ремесленников и т. д.) привела к изобретению счёта и соответствующих систем жестовых, а затем и графических символов. Сначала количественные оценки, видимо, выражались с помощью жестовых символов (показом пальцев рук и др.). Когда жестовых символов стало не хватать, начали изобретать графические. Формирование понятия числа и идея экономии символов привели к изобретению систем счисления. Одной из них (двоичной) суждено было сыграть ключевую роль в изобретении цифровой программируемой машины и цифровом кодировании s-моделей, реализуемых с помощью программируемых машин.

Развитие s-моделей в виде графических схем и одновременное совершенствование речи привели к графической модели речи. Появилась письменность. Она стала не только важным этапом в становлении s-моделирования, но и мощным инструментом развития интеллектуальной деятельности. Теперь описания объектов моделирования и связей между ними могли быть представлены композициями рисунков, схем и текстов.

С созданием возможности фиксировать наблюдения, рассуждения и планы в виде s-моделей сообщений, которые можно хранить и передавать, актуальными стали задачи изобретения носителей сообщений, инструментов для рисования и письма, красящих средств и др. Это были первые задачи на пути построения s-среды.

Важный этап в графическом моделировании связан с моделями схематических изображений (прародителей чертежей) – основы проектирования. Представление проектируемого трёхмерного объекта в трёх двумерных проекциях, на которых показаны размеры и наименования деталей, сыграло решающую роль в развитии инженерного дела.

Компьютерная эпоха стала эпохой ускоренного развития s-моделирования.

Символьное моделирование как научная дисциплина

В 1989 в монографии В. Д. Ильина «Система порождения программ» было дано определение s-моделирования как научной дисциплины: «Символьное моделирование – научная дисциплина, изучающая процесс построения символьных моделей объектов произвольной природы».

«Объектами символьного моделирования могут быть и процесс формальных рассуждений (в математике), и процесс изобретения (как творческого акта, существующего во всех научных областях, в том числе и в математике, и не поддающегося полной формализации).» (с. 170 в электронной версии книги, с. 264265 – в бумажной). В 2009 г. была опубликована монография с изложением теоретических основ s-моделирования (А. В. Ильин, В. Д. Ильин. Основы теории s-моделирования, М.: ИПИ РАН, 2009).

Актуальная проблема

Одной из постоянно актуальных проблем s-моделирования является реализация в s-среде накопленного человечеством арсенала знаний и умений. Для её решения природный сенсорный комплекс (зрение, слух, осязание, обоняние, вкус) человека дополняется в s-среде изобретёнными сенсорами, рассчитанными на восприятие визуальных, аудио, тактильных и запаховых символов. Это необходимо для того, чтобы человек с интеллектуальными способностями мог не только пользоваться существующими технологиями s-моделирования сущностей, но и участвовать в изобретении новых информационных технологий.

Лит.: Ильин А. В., Ильин В. Д. Основы теории s-моделирования. М.: ИПИ РАН, 2009; Ильин В. Д. Система порождения программ. Версия 2013 г. М.: ИПИ РАН, 2013.

  • СИ́МВОЛЬНОЕ МОДЕЛИ́РОВАНИЕ в информатике, построение с помощью компьютерных программ текстовых, графич., аудио-, видео- и др. символьных моделей, рассчитанных на интерпретацию человеком (2015)
Вернуться к началу