Подпишитесь на наши новости
Вернуться к началу с статьи up
 

МА́ССЫ НЕБЕ́СНЫХ ТЕЛ

  • рубрика

    Рубрика: Физика

  • родственные статьи
  • image description

    В книжной версии

    Том 19. Москва, 2011, стр. 316-317

  • image description

    Скопировать библиографическую ссылку:




Авторы: Г. И. Ширмин

МА́ССЫ НЕБЕ́СНЫХ ТЕЛ (ме­то­ды оп­ре­де­ле­ния). Оп­ре­де­ле­ние М. н. т. ста­ло воз­мож­ным в 17 в., по­сле от­кры­тия все­мир­но­го тя­го­те­ния за­ко­на.

Массы Земли и других планет

Од­на из пер­вых оце­нок мас­сы Зем­ли по­лу­че­на Г. Ка­вен­ди­шем по­сле про­ве­де­ния опы­та по экс­пе­рим. оп­ре­де­ле­нию уни­вер­саль­ной гра­ви­тац. по­сто­ян­ной. Из­ме­ряя с по­мо­щью кру­тиль­ных ве­сов си­лу при­тя­же­ния ме­ж­ду мас­сив­ным свин­цо­вым ша­ром и под­ве­шен­ным вбли­зи не­го не­боль­шим ме­тал­лич. ша­ри­ком, Ка­вен­диш срав­нил ве­ли­чи­ну этой си­лы с си­лой при­тя­же­ния ша­ри­ка Зем­лёй и су­мел вы­чис­лить, во сколь­ко раз мас­са Зем­ли пре­вы­ша­ет мас­су свин­цо­во­го ша­ра. Та­ким об­ра­зом бы­ла по­лу­че­на оцен­ка мас­сы Зем­ли (6·1024 кг) и её ср. плот­но­сти (5,5 кг/м3).

 

Мас­сы др. пла­нет оп­ре­де­ля­ют по па­ра­мет­рам их ор­бит с по­мо­щью третье­го за­ко­на Ке­п­ле­ра (см. Ке­п­ле­ра за­ко­ны). В обоб­щён­ной фор­ме этот за­кон име­ет вид: $T_1^2(M_☉+m_1)/T_2^2(M_☉+m_2)=a_1^3/a_2^3$, где $M☉$  – мас­са Солн­ца, $m_1$ и $m_2$ – мас­сы двух пла­нет, $a_1$ и $a_2$ – боль­шие по­лу­оси их ор­бит, $T_1$ и $T_2$ – пе­рио­ды об­ра­ще­ния этих пла­нет во­круг Солн­ца. Для пла­не­ты, имею­щей спут­ник мас­сой $m_с$, дви­жу­щий­ся по пла­не­то­цен­три­че­ской ор­би­те с боль­шой по­лу­осью $a_с$ и пе­рио­дом об­ра­ще­ния $T_с$, этот за­кон при­об­ре­та­ет вид: $T^2(M_☉+m)/T_с^2(m+m_с)=a^3/a_с^3,$  где $m$ – масса планеты, $a$ и $T$– её боль­шая по­лу­ось и пе­ри­од об­ра­ще­ния со­от­вет­ствен­но. Ес­ли в этой фор­му­ле пре­неб­речь мас­сой пла­не­ты по срав­не­нию с $M_☉$ и мас­сой спут­ни­ка по срав­не­нию с мас­сой пла­не­ты, то мож­но по­лу­чить со­от­но­ше­ние, по­зво­ляю­щее оп­ре­де­лить от­но­ше­ние мас­сы пла­не­ты к $M_☉:\: m/M_☉=T^2a_с^3/T_с^2a^3$. По па­ра­мет­рам ор­бит Зем­ли и Лу­ны бы­ла про­ве­де­на оцен­ка массы Солнца – при­мер­но в 333 000 раз боль­ше мас­сы Зем­ли.

 

Мас­сы Мер­ку­рия и Ве­не­ры, у ко­то­рых от­сут­ст­ву­ют ес­теств. спут­ни­ки, этим спо­со­бом оп­ре­де­лить не­воз­мож­но. Един­ст­вен­ный и го­раз­до бо­лее труд­ный путь со­сто­ит в ис­поль­зо­ва­нии воз­му­ще­ний (все­гда яв­ляю­щих­ся функ­ция­ми воз­му­щаю­щей мас­сы), ко­то­рые пла­не­та вы­зы­ва­ет в дви­же­нии др. тел Сол­неч­ной сис­те­мы. Зна­чи­тель­но бо­лее труд­ную за­да­чу пред­став­ля­ет оп­ре­де­ле­ние мас­сы Лу­ны. Яв­ля­ясь бли­жай­шим к Зем­ле не­бес­ным те­лом, Лу­на не мо­жет, стро­го го­во­ря, счи­тать­ся спут­ни­ком на­шей пла­не­ты, т. к. Солн­це при­тя­ги­ва­ет её в 2,5 раза силь­нее, чем Зем­ля. Во­круг Солн­ца об­ра­ща­ет­ся т. н. ба­ри­центр (центр масс) двой­ной пла­не­ты Зем­ля–Лу­на, в то вре­мя как обе они опи­сы­ва­ют от­но­си­тель­но ба­ри­цен­тра эл­лип­тич. ор­би­ты с пе­рио­дом в 1 ме­сяц. По­это­му мас­су Лу­ны мож­но вы­чис­лить по ве­ли­чи­не ме­сяч­но­го сме­ще­ния Зем­ли от­но­си­тель­но ба­ри­цен­тра. В точ­ных ас­тро­но­мич. на­блю­де­ни­ях дол­го­ты Солн­ца про­яв­ля­ет­ся т. н. лун­ное не­ра­вен­ст­во, сви­де­тель­ст­вую­щее о том, что центр Зем­ли в те­че­ние ме­ся­ца опи­сы­ва­ет эл­липс с боль­шой по­лу­осью, рав­ной при­мер­но 3/4 ра­диу­са Зем­ли. По­след­нее оз­на­ча­ет, что ба­ри­центр сис­те­мы Зем­ля–Лу­на все­гда рас­по­ла­га­ет­ся внут­ри Зем­ли и ни­ко­гда не вы­хо­дит за пре­де­лы её по­верх­но­сти. Оп­ре­де­лён­ная по этим дан­ным мас­са Лу­ны со­став­ля­ет ок. 1/81 мас­сы Зем­ли.

Мас­сы всех пла­нет Сол­неч­ной сис­те­мы вхо­дят в чис­ло фун­дам. ас­тро­но­мич. по­сто­ян­ных, зна­че­ния ко­то­рых ре­гу­ляр­но уточ­ня­ют­ся на ос­но­ве всей со­вокуп­но­сти ас­тро­но­мич. на­блю­де­ний и утвер­жда­ют­ся Ме­ж­ду­на­р. ас­тро­но­ми­ч. сою­зом.

Массы звёзд

Тре­тий за­кон Ке­п­ле­ра в его обоб­щён­ной фор­ме по­зво­ля­ет так­же оп­ре­де­лить сум­мар­ную мас­су двой­ной звез­ды по из­вест­но­му зна­че­нию её го­дич­но­го па­рал­лак­са. Ес­ли $m_1$ и $m_2$ – мас­сы ком­по­нен­тов звёзд­ной па­ры, $A$ – боль­шая по­лу­ось ор­би­ты звез­ды-спут­ни­ка от­но­си­тель­но гл. звез­ды, $P$ – её пе­ри­од об­ра­ще­ния, $a$ – ср. рас­стоя­ние от Зем­ли до Солн­ца (рав­ное 1 а. е.), $T$ – пе­ри­од об­ра­ще­ния Зем­ли во­круг Солн­ца (1 год), $m$ – мас­са Зем­ли, то, со­глас­но тре­ть­ему за­ко­ну Ке­п­ле­ра, $a^3/T^2(M_☉+m) =A^3/P^2(m_1+m_2)$. Пре­неб­ре­гая мас­сой Зем­ли по срав­не­нию с мас­сой Солн­ца и вы­брав в ка­че­ст­ве еди­ни­цы из­ме­ре­ния вре­ме­ни год, а рас­стоя­ния – а. е., по­лу­чим фор­му­лу $(m_1+m_2)/M_☉=A^3/P^2$, по­зво­ляю­щую оп­ре­де­лить от­но­ше­ния сум­мы масс двой­ной звез­ды к $M_☉$. Зна­че­ние $A$ мож­но вы­чис­лить, ес­ли из­вес­тны го­дич­ный па­рал­лакс π двой­ной звез­ды и зна­че­ние боль­шой по­лу­оси $a″$ от­но­ситель­ной ор­би­ты звез­ды-спут­ни­ка, вы­ражен­ное в уг­ло­вых се­кун­дах. То­гда $A=a″/π$ и для оп­ре­де­ле­ния от­но­ше­ния сум­мар­ной мас­сы двой­ной звёзд­ной сис­те­мы к $M_☉$ мож­но вос­поль­зо­вать­ся фор­му­лой $(m_1+m_2)/M_☉= (a″ )^3/π^3P^2$. Напр., для двой­ной звёзд­ной сис­те­мы Си­ри­ус А и Си­ри­ус B со­от­вет­ст­вую­щие зна­че­ния со­став­ля­ют $a″$=7,57″, $π$=0,37″ и $P$ = 50 лет, со­от­вет­ст­вен­но сум­мар­ная мас­са этой двой­ной звёзд­ной сис­те­мы оце­ни­ва­ет­ся в 3,4$M_☉$.

В том слу­чае, ко­гда уда­ёт­ся из­ме­рить по­ло­же­ния ви­зу­аль­но-двой­ных звёзд от­но­си­тель­но их ба­ри­цен­тра, воз­ни­ка­ет воз­мож­ность оп­ре­де­лить от­но­ше­ние масс обо­их ком­по­нен­тов. Та­кие из­ме­ре­ния тре­бу­ют зна­ния точ­ных по­ло­же­ний ком­по­нен­тов сис­те­мы от­но­си­тель­но да­лё­ких звёзд (т. н. звёзд фо­на) на дос­та­точ­но дли­тель­ных ин­тер­ва­лах вре­ме­ни. Про­дол­жит. на­блю­де­ния оди­ноч­ной звез­ды в те­че­ние мн. лет по­ка­зы­ва­ют, что ес­ли она име­ет соб­ст­вен­ное дви­же­ние от­но­си­тель­но звёзд­но­го фо­на, то её пе­ре­ме­ще­ние про­ис­хо­дит по ду­ге боль­шо­го кру­га не­бес­ной сфе­ры. Но ес­ли звез­да – ви­зу­аль­но-двой­ная, то по ду­ге боль­шо­го кру­га сме­ща­ет­ся её ба­ри­центр, а оба ком­по­нен­та сис­те­мы дви­жут­ся по кри­во­ли­ней­ным ба­ри­цен­трич. тра­ек­то­ри­ям. Точ­ные ас­т­ро­мет­рич. из­ме­ре­ния по­ло­же­ний ком­по­нен­тов двой­ной сис­те­мы по­зво­ля­ют про­сле­дить тра­ек­то­рию цен­тра масс, а за­тем и ин­ди­ви­ду­аль­ные ор­би­ты отд. ком­по­нен­тов. Ес­ли $α_1$ и $α_2$ – вы­ра­жен­ные в се­кун­дах ду­ги уг­ло­вые рас­стоя­ния от гл. звез­ды с мас­сой $M_1$ и звез­ды-спут­ни­ка с мас­сой $M_2$ до ви­ди­мо­го по­ло­же­ния цен­тра масс двой­ной сис­те­мы, то то­гда, по оп­ре­де­ле­нию цен­тра масс, $M_1α_1=M_2α_2$, от­ку­да сле­ду­ет фор­му­ла для от­но­ше­ния масс ком­по­нен­тов ви­зу­аль­но-двой­ной звез­ды: $M_1/M_2=α_2/α_1$.

Зна­ние сум­мар­ной мас­сы двой­ной звез­ды и от­но­ше­ния масс её ком­по­нен­тов по­зво­ля­ет без тру­да вы­чис­лить мас­сы обе­их звёзд. Ти­пич­ные зна­че­ния масс звёзд, по­лу­чен­ные по на­блю­де­ни­ям ви­зу­аль­но-двой­ных звёзд, ле­жат в пре­де­лах (0,1–20)$M_☉$. Бо­лее по­ло­ви­ны звёзд на­шей Га­лак­ти­ки вхо­дят в со­став двой­ных, трой­ных звёзд или звёзд­ных сис­тем боль­шей крат­но­сти. Имен­но ис­сле­до­ва­ния двой­ных звёзд по­зво­ли­ли по­лу­чить дан­ные о звёзд­ных мас­сах и по­слу­жи­ли ос­но­вой для ус­та­нов­ле­ния со­от­но­ше­ния мас­са – све­ти­мость (см. Мас­са – све­ти­мость за­ви­си­мость). Это со­от­но­ше­ние ши­ро­ко ис­поль­зу­ет­ся в звёзд­ной ас­тро­но­мии и ас­т­ро­фи­зи­ке в ка­че­ст­ве не­за­ме­ни­мо­го сред­ст­ва оцен­ки масс звёзд по их све­ти­мо­стям.

Со­глас­но совр. пред­став­ле­ни­ям, мас­сы звёзд за­клю­че­ны в пре­де­лах (0,08–100)$M_☉$. Мас­са отд. звез­ды в сред­нем близ­ка к $M_☉$, в то вре­мя как звёз­ды с мас­са­ми, в де­сят­ки раз бóльшими мас­сы Солн­ца, встре­ча­ют­ся дос­та­точ­но ред­ко: это гл. обр. звёз­ды ран­них спек­траль­ных клас­сов O и B.

Массы звёздных скоплений и галактик

Мас­су $M$ ша­ро­во­го звёзд­но­го ско­п­ле­ния ра­диу­са $R$ мож­но оце­нить по ве­ли­чи­не кру­го­вой ско­ро­сти $V$ звез­ды, дви­жу­щей­ся на гра­ни­це ско­п­ле­ния, счи­тая, что цен­тро­ст­ре­мит. ус­ко­ре­ние звез­ды вы­зва­но при­тя­же­ни­ем всех звёзд ша­ро­во­го ско­п­ле­ния. То­гда мас­са ско­п­ле­ния оце­ни­ва­ет­ся по фор­му­ле $M=V^2R/G$, где $G$ – гра­ви­тац. по­сто­ян­ная. Бо­лее точ­ная оцен­ка мас­сы звёзд­но­го ско­п­ле­ния по­лу­ча­ет­ся при ис­поль­зо­ва­нии не­ко­то­рых ус­ред­нён­ных зна­че­ний ско­ро­стей звёзд и их ср. уда­лён­но­сти от цен­тра ско­п­ле­ния.

На­ли­чие у га­лак­ти­ки од­но­го спут­ни­ка (иг­раю­ще­го роль проб­но­го те­ла) по­зво­ля­ет оце­нить мас­су га­лак­ти­ки с по­мо­щью ана­ло­гич­ной фор­му­лы, но точ­ность та­кой оцен­ки очень не­вы­со­ка. В ка­че­ст­ве проб­но­го те­ла мо­жет рас­смат­ри­вать­ся др. га­лак­ти­ка, ша­ро­вое ско­п­ле­ние, рас­по­ло­жен­ное на пе­ри­фе­рии га­лак­ти­ки, и да­же об­ла­ко меж­звёзд­но­го га­за. Ес­ли у га­лак­ти­ки име­ет­ся неск. спут­ни­ков (или др. проб­ных тел), то мож­но пред­по­ло­жить, что рас­пре­де­ле­ние по­ло­же­ний и ско­ро­стей спут­ни­ков име­ет слу­чай­ный ха­рак­тер. Это пред­по­ло­же­ние реа­ли­зу­ет­ся тем точ­нее, чем боль­ше име­ет­ся проб­ных тел (напр., в га­лак­ти­ке М31 в со­звез­дии Ан­дро­ме­ды ок. 400 ша­ро­вых ско­п­ле­ний). То­гда в при­ве­дён­ной фор­му­ле мож­но ис­поль­зо­вать ви­ди­мые рас­стоя­ния и ско­ро­сти проб­ных тел, ус­ред­нён­ные за про­ме­жу­ток вре­ме­ни, зна­чи­тель­но пре­вы­шаю­щий их ор­би­таль­ные пе­рио­ды. Мас­сы спи­раль­ных га­лак­тик мож­но оце­ни­вать с по­мо­щью об­ла­ков меж­звёзд­но­го га­за на кру­го­вых ор­би­тах в га­лак­тич. плос­ко­сти. Из­ло­жен­ный ме­тод из­ме­ре­ния масс га­лак­тик (ме­тод Нью­то­на) ба­зи­ру­ет­ся на за­ко­не все­мир­но­го тя­го­те­ния. Бо­лее пер­спек­тив­ным счи­та­ет­ся ме­тод Эйн­штей­на, в ко­то­ром мас­сив­ные га­лак­ти­ки рас­смат­ри­ва­ют­ся в ка­че­ст­ве гра­ви­тац. лин­зы (см. Гра­ви­та­ци­он­ная фо­ку­си­ров­ка).

В оцен­ке сум­мар­ной мас­сы га­лак­ти­ки с учё­том всех её со­став­ляю­щих (звёзд, га­за, пы­ли и др.) су­ще­ст­вен­ную роль иг­ра­ет кру­го­вая ско­рость проб­но­го те­ла. Эта ско­рость при уда­ле­нии от цен­тра га­лак­ти­ки долж­на умень­шать­ся по оп­ре­де­лён­но­му за­ко­ну. Од­на­ко по ре­зуль­та­там на­блю­де­ний уда­лось ус­та­но­вить, что этот за­кон вы­пол­ня­ет­ся толь­ко во внутр. об­лас­ти га­лак­ти­ки. На пе­ри­фе­рии лю­бой га­лак­ти­ки кру­го­вая ско­рость поч­ти все­гда вы­ше зна­че­ния, по­лу­чен­но­го в пред­по­ло­же­нии, что вся мас­са га­лак­ти­ки за­клю­че­на в её звёз­дах и га­зе. Ча­ще все­го ско­рость вра­ще­ния звёзд не умень­ша­ет­ся с рас­стоя­ни­ем от цен­тра га­лак­ти­ки, а ос­та­ёт­ся по­сто­ян­ной или да­же рас­тёт при при­бли­же­нии к ви­ди­мо­му краю га­лак­ти­ки. Для объ­яс­не­ния та­ко­го фе­но­ме­на бы­ло вы­дви­ну­то пред­по­ло­же­ние о су­ще­ст­во­ва­нии в га­лак­ти­ках скры­той мас­сы, по­вы­шаю­щей ве­ли­чи­ну на­пря­жён­но­сти гра­ви­тац. по­ля га­лак­ти­ки вда­ли от её цен­тра. Во­прос о гра­ни­цах га­лак­тик и их пол­ных мас­сах на нач. 21 в. не ре­шён: не­све­тя­щие­ся час­ти га­лак­тик мо­гут про­сти­рать­ся на по­ря­док даль­ше ви­ди­мой гра­ни­цы их звёзд­ных дис­ков.

Лит.: Ку­ли­ков­ский П. Г. Звезд­ная ас­тро­но­мия. 2-е изд. М., 1985; Ко­но­но­вич Э. В., Мо­роз В. И. Об­щий курс ас­тро­но­мии. 4-е изд. М., 2011.

Вернуться к началу