ДУГОВО́Й РАЗРЯ́Д
-
Рубрика: Физика
-
Скопировать библиографическую ссылку:
ДУГОВО́Й РАЗРЯ́Д, самостоятельный квазистационарный электрич. разряд в газе, горящий практически при любых давлениях газа, превышающих 0,01–1 Па (10–4–10–2 мм рт. ст.), при постоянной или меняющейся с низкой частотой (до 103 Гц) разности потенциалов между электродами. Для Д. р. характерны высокая плотность тока на катоде (102–108 А/см2) и низкое катодное падение потенциала, не превышающее эффективный потенциал ионизации среды в разрядном промежутке. Впервые Д. р. между двумя угольными электродами в воздухе наблюдали в 1802 В. В. Петров и независимо от него в 1808 Г. Дэви. Светящийся токовый канал этого разряда при горизонтальном расположении электродов под действием конвективных потоков изогнут дугообразно, отсюда и названия – Д. р., электрич. дуга.
Для большинства Д. р. при большой плотности тока на катоде возникает малое очень яркое пятно, перемещающееся по всей поверхности катода. Темп-ра в пятне может достигать темп-ры кипения (или возгонки) материала катода. Значит. роль в механизме поддержания тока Д. р. играет термоэлектронная эмиссия. Над катодным пятном образуется слой положительного объёмного заряда, обеспечивающего ускорение эмитируемых электронов до энергий, достаточных для ударной ионизации атомов и молекул газа. Поскольку этот слой очень тонкий (меньше длины свободного пробега электрона), он создаёт высокую напряжённость поля у поверхности катода, особенно у микронеоднородностей, поэтому существенными оказываются и автоэлектронная эмиссия, и термоавтоэлектронная эмиссия. Высокая плотность тока и «перескоки» пятна с точки на точку создают условия для взрывной электронной эмиссии.
От зоны катодного падения потенциала до анода расположен т. н. положительный столб. На аноде обычно формируется яркое анодное пятно, в котором темп-ра поверхности почти такая же, как и в катодном. В некоторых видах Д. р. при токах в десятки ампер на катоде и аноде возникают факелы в виде плазменных струй, вылетающих с большой скоростью перпендикулярно поверхности электродов. При токах 100–300 А возникают добавочные факелы, образуя пучок плазменных струй. Нагретый до высокой темп-ры и ионизованный газ в столбе представляет собой плазму. Электропроводность плазмы может быть очень высокой, но обычно она на неск. порядков ниже электропроводности металлов.
При концентрации заряженных частиц более 1018 см–3 состояние плазмы иногда можно считать близким к равновесному. При меньших плотностях, вплоть до 1015 см–3, может возникнуть состояние локального термодинамич. равновесия (ЛТР), когда в каждой точке плазмы все статистич. распределения близки к равновесным при одном значении темп-ры, которая различна в разных точках. Исключение в этом случае составляет лишь излучение плазмы: оно далеко от равновесного и определяется составом плазмы и скоростями радиац. процессов. При ограниченных размерах столба Д. р. даже в плотной плазме на оси столба состояние ЛТР нарушается за счёт радиац. потерь. Это выражается в сильном отклонении состава плазмы и населённостей возбуждённых уровней от их равновесных значений. Кинетика плазмы в столбе Д. р. при высоких плотностях определяется в осн. процессами соударений, а по мере снижения плотности (удаления от оси) всё большую роль играют радиац. процессы.
Диаметр столба Д. р. определяется условиями баланса возникающей и теряемой энергии. С ростом тока или давления меняются механизмы потерь, обусловленные теплопроводностью газа, амбиполярной диффузией, радиац. процессами и др. При таких сменах может происходить самосжатие (контракция) столба (см. Контрагированный разряд).
В зависимости от условий горения Д. р. его параметры меняются в широких пределах. Классич. пример Д. р. – разряд постоянного тока, свободно горящий в воздухе между угольными электродами. Его типичные параметры: ток от 1 А до сотен ампер, расстояние между электродами от миллиметров до нескольких сантиметров, темп-ра плазмы ок. 7000 К, темп-ра анодного пятна ок. 3900 К.
Д. р. применяется как лабораторный источник света и в технике (дуговые угольные лампы). Д. р. с угольным анодом, просверлённым и заполненным исследуемыми веществами, используется в спектральном анализе руд, минералов, солей и т. п. Д. р. применяется в плазмотронах, дуговых печах для выплавки металлов, при электросварке, в разл. электронных и осветит. приборах. Т. н. вакуумная дуга, которая зажигается в вакууме и горит в парáх металла, испарившегося с катода, используется в вакуумных высоковольтных выключателях.