МЕРКУ́РИЙ

  • рубрика

    Рубрика: Физика

  • родственные статьи
  • image description

    В книжной версии

    Том 20. Москва, 2012, стр. 27-29

  • image description

    Скопировать библиографическую ссылку:




Авторы: Л. В. Ксанфомалити

МЕРКУ́РИЙ, бли­жай­шая к Солн­цу пла­не­та Сол­неч­ной сис­те­мы, наи­мень­шая из пла­нет зем­ной груп­пы; ас­тро­но­мич. знак . Пред­по­ла­га­ет­ся, что на М. мо­гут быть най­де­ны стёр­шие­ся на др. пла­не­тах сле­ды про­цес­сов, со­пут­ст­во­вав­ших фор­ми­ро­ва­нию Сол­неч­ной сис­те­мы. М. был из­вестен с глу­бо­кой древ­но­сти в чис­ле пя­ти др. пла­нет и вы­де­лял­ся сре­ди них бы­ст­рым дви­же­ни­ем на фо­не не­ба. В др.-греч. ми­фо­ло­гии М. счи­тал­ся звез­дой бо­га Гер­ме­са, в др.-рим. ми­фо­ло­гии – бо­га Мер­ку­рия. По­это­му в англо­языч­ной на­уч. лит-ре с су­ще­ст­ви­тель­ны­ми, имею­щи­ми от­но­ше­ние к М., ис­поль­зу­ют­ся два при­ла­га­тель­ных-си­но­ни­ма: mercurian и her­mean (мер­ку­ри­ан­ский).

Уг­ло­вое рас­стоя­ние М. от Солн­ца в наи­боль­шей элон­га­ции не пре­вы­ша­ет 28,3°. На­блю­дать М. мож­но толь­ко в пе­рио­ды, про­дол­жаю­щие­ся ок. 10 сут и на­сту­паю­щие неск. раз в го­ду (наи­луч­ших пе­рио­дов, как пра­ви­ло, два в го­ду). На­блю­де­ния воз­мож­ны обыч­но ме­нее ча­са в су­тки в ве­чер­ние или ут­рен­ние ча­сы, ко­гда М. ста­но­вит­ся за­ме­тен на фо­не су­ме­реч­но­го не­ба. В вы­со­ких ши­ро­тах на­блю­де­ния М. прак­ти­че­ски не­воз­мож­ны. В днев­ное вре­мя М. мож­но ви­деть толь­ко с по­мо­щью те­ле­ско­па, при­чём раз­ли­чить к.-л. де­та­ли на его поверхно­сти прак­ти­че­ски не уда­ёт­ся.

Общая характеристика планеты

Рис. 1. Луна (слева) и Меркурий (справа) в одинаковом масштабе. Изображение Меркурия построено обработкой мозаики из снимков, сделанных КА «Мессенджер» в 2008.

Мас­са М. со­став­ля­ет 3,302·1023 кг (0,055 мас­сы Зем­ли), эк­ва­то­ри­аль­ный ра­ди­ус – 2440±1 км (0,38 ра­диу­са Зем­ли), ус­ко­ре­ние сво­бод­но­го па­де­ния – 3,72 м/с2 (0,38 зем­но­го), пер­вая и вто­рая кос­мич. ско­ро­сти рав­ны со­от­вет­ст­вен­но 3,0 км/с и 4,25 км/с. Ор­би­та Мер­ку­рия на­кло­не­на к плос­ко­сти эк­лип­ти­ки на 7° и силь­но вы­тя­ну­та (экс­цен­три­си­тет ор­би­ты 0,206). Боль­шая по­лу­ось ор­би­ты (ср. рас­стоя­ние от Солн­ца) со­став­ля­ет 0,387 а. е. (58 млн. км); в пе­ри­ге­лии рас­стоя­ние от М. до Солн­ца рав­но 0,31 а. е., в афе­лии – 0,47 а. е.

Си­де­рич. пе­ри­од об­ра­ще­ния М. 87,9694 сут, ор­би­таль­ная ско­рость в ср. со­став­ля­ет 48 км/с, а в пе­ри­ге­лии дос­ти­га­ет 54 км/с, что поч­ти вдвое пре­вы­ша­ет ор­би­таль­ную ско­рость Зем­ли. Ср. по­ток сол­неч­но­го из­лу­че­ния у по­верх­но­сти М. 9,08 кВт/м2 (в 6,6 раза боль­ше, чем на ор­би­те Зем­ли). Гео­мет­рич. аль­бе­до со­став­ля­ет 0,106, сфе­ри­че­ское – 0,119. Име­ют­ся сле­ды край­не раз­ре­жен­ной ат­мо­сфе­ры (эк­зо­сфе­ры) с не­по­сто­ян­ной плот­но­стью ок. 107 ато­мов/см3. Ср. темп-ра по­верх­но­сти пла­не­ты со­став­ля­ет 340 К, мак­сималь­ная – до 710 К, ми­ни­маль­ная – 88 К. Спут­ни­ков у М. нет.

Си­де­рич. пе­ри­од вра­ще­ния ра­вен 58,6461 сут; ось вра­ще­ния М. прак­ти­че­ски пер­пен­ди­ку­ляр­на к плос­ко­сти ор­би­ты. До 2-й пол. 20 в. пред­по­ла­га­лось, что пе­ри­од вра­ще­ния М. син­хро­ни­зи­ро­ван с пе­рио­дом его об­ра­ще­ния во­круг Солн­ца. В 1965 ме­то­да­ми меж­пла­нет­ной ра­дио­ло­ка­ции ус­та­нов­ле­но, что М. на­хо­дит­ся в ре­зо­нанс­ном, но не син­хрон­ном вра­ще­нии: за вре­мя двух обо­ро­тов во­круг Солн­ца М. со­вер­ша­ет ров­но три обо­ро­та во­круг сво­ей оси. Из-за ре­зо­нанс­но­го вра­ще­ния и вы­со­ко­го экс­цен­три­си­те­та ор­би­ты на М. мож­но вы­де­лить т. н. го­ря­чие дол­го­ты – сек­то­ры у двух про­ти­во­по­лож­ных ме­ри­диа­нов, ко­то­рые по­пе­ре­мен­но об­ра­ще­ны к Солн­цу при про­хо­ж­де­нии пе­ри­ге­лия. Здесь по­верх­ность М. под­вер­га­ет­ся наи­бо­лее ин­тен­сив­но­му на­гре­ву.

Из-за вы­со­ко­го экс­цен­три­си­те­та ор­би­ты ско­рость ор­би­таль­но­го дви­же­ния М. ме­ня­ет­ся, в то вре­мя как ско­рость соб­ст­вен­но­го вра­ще­ния пла­не­ты ос­та­ёт­ся по­сто­ян­ной. Эти ско­ро­сти срав­ни­мы, и в пе­ри­ге­лии ор­би­таль­ное дви­же­ние в те­че­ние при­мер­но 8 сут об­го­ня­ет вра­ще­ние пла­не­ты, из-за че­го на дол­го­тах, от­стоя­щих от «го­ря­чих дол­гот» на 90°, на­блю­да­ют­ся дву­крат­ные вос­хо­ды и за­ка­ты.

Поверхность Меркурия

Рис. 2. Поверхность Меркурия (снимок КА «Мессенджер»).

Оби­ли­ем ме­тео­рит­ных кра­те­ров на по­верх­но­сти М. на­по­ми­на­ет об­рат­ную сто­ро­ну Лу­ны. Од­на­ко здесь нет об­шир­ных ла­во­вых рав­нин, соз­даю­щих лун­ные мо­ря (рис. 1). Рав­ни­на, по­кры­тая мно­го­числ. пе­ре­кры­ваю­щи­ми­ся ме­тео­рит­ны­ми кра­те­ра­ми (рис. 2), яв­ля­ет­ся наи­бо­лее древ­ним ти­пом рель­е­фа М. Боль­шин­ст­во кра­те­ров об­ра­зо­ва­лось ок. 3,9 млрд. лет на­зад в пе­ри­од мак­си­му­ма вы­па­де­ния круп­ных ме­тео­рит­ных тел. Ана­ло­гич­ные лун­ные кра­те­ры име­ют зна­чи­тель­но бóльшие диа­мет­ры, чем кра­те­ры на М., об­ра­зо­ван­ные та­ки­ми же по мас­се ме­тео­рои­да­ми. Это объ­яс­ня­ет­ся тем, что ус­ко­ре­ние сво­бод­но­го па­де­ния на М. в 2,4 раза вы­ше, чем на Лу­не. По­это­му вы­бро­шен­ный при уда­ре ма­те­ри­ал вы­па­дал бли­же к цен­тру кра­те­ра: при оди­на­ко­вой энер­гии пло­щадь, ко­то­рую по­кры­ва­ет вы­брос на М., в 5 раз мень­ше, чем на Лу­не. Др. тип по­верх­но­сти – бес­кра­тер­ные рав­ни­ны (об­шир­ные про­ме­жут­ки ме­ж­ду кра­те­ра­ми), ха­рак­тер­ные толь­ко для М. Не­обыч­ная де­таль рель­е­фа М. – эс­кар­пы (об­ры­вы) – ус­ту­пы выс. 1–2 км, раз­де­ляю­щие два ни­чем не от­ли­чаю­щих­ся рай­она. Про­тя­жён­ность та­ких об­ры­вов – мн. сот­ни ки­ло­мет­ров. Напр., эс­карп Дис­ка­ве­ри тя­нет­ся от 56° ю. ш., 38° в. д. до 50° ю. ш., 36° в. д. Мес­та­ми он пе­ре­се­ка­ет­ся круп­ны­ми кра­те­ра­ми. Эс­кар­пы об­ра­зо­ва­лись при ох­ла­ж­де­нии пла­не­ты, ко­гда про­ис­хо­ди­ло её сжа­тие, по­влёк­шее за со­бой сдви­ги отд. уча­ст­ков утол­щаю­щей­ся ко­ры. По-ви­ди­мо­му, имен­но этот про­цесс пре­дот­вра­тил мощ­ные вы­бро­сы ла­вы.

М. по­крыт мел­ко раз­дроб­лен­ным ма­те­риа­лом (ре­го­ли­том), ко­то­рый име­ет при­мер­но та­кие же от­ра­жат. свой­ст­ва, как и ре­го­лит Лу­ны. Ко­ра М. обед­не­на ми­не­ра­ла­ми, со­дер­жа­щи­ми FeO (ме­нее 3%), и обо­га­ще­на по­ле­вы­ми шпа­та­ми; воз­мож­но при­сут­ст­вие ще­лоч­ных ба­заль­тов, а так­же гор­ных по­род, вклю­чаю­щих обед­нён­ные же­ле­зом пи­рок­се­ны. На по­верх­но­сти М. рас­про­стра­не­ны та­кие по­ро­ды, как анор­то­зи­ты. ИК-спек­тры ука­зы­ва­ют так­же на при­сут­ст­вие не­фе­ли­но­вых сие­ни­тов. Дли­ны волн мак­си­му­мов спек­тров со­от­вет­ст­ву­ют гор­ным по­ро­дам сред­не­го и ос­нов­но­го со­ста­ва со зна­чит. сте­пе­нью не­од­но­род­но­сти.

Особенности строения Меркурия

Вы­со­кая ср. плот­ность М. (5430 кг/м3, чуть ни­же ср. плот­но­сти Зем­ли) и боль­шое зна­че­ние без­раз­мер­но­го мо­мента инер­ции (ха­рак­те­ри­зую­ще­го кон­цен­тра­цию ве­ще­ст­ва к цен­тру М. и со­став­ляю­ще­го ок. 0,324) ука­зы­ва­ют на мас­сив­ное ме­тал­лич. яд­ро пла­не­ты. Ра­ди­ус ме­тал­лич. яд­ра М. дос­ти­га­ет 0,75 ра­диу­са пла­не­ты. Оно за­ни­ма­ет ок. 45% объ­ё­ма пла­не­ты, на его до­лю при­хо­дит­ся 75–80% мас­сы М. (у Зем­ли – 32%), при­чём т. н. ос­во­бо­ж­дён­ная (от сжа­тия в не­драх пла­не­ты) плот­ность М. зна­чи­тель­но вы­ше зем­ной. Над ядром рас­по­ло­же­на си­ли­кат­ная обо­лоч­ка тол­щи­ной 500–600 км, а плот­ность по­верх­но­ст­ных по­род М., ве­ро­ят­но, име­ет тот же по­ря­док, что и у Лу­ны. Т. о., М. не уда­ёт­ся от­не­сти ни к ти­пу Зем­ли, ни к ти­пу Лу­ны: по­верх­ность пла­не­ты по­хо­жа на лун­ную, но же­лез­ное яд­ро по сво­им раз­ме­рам срав­ни­мо с зем­ным.

М. об­ла­да­ет маг­нит­ным по­лем (от­кры­то КА «Ма­ри­нер-10» в 1974), что ука­зы­ва­ет на на­ли­чие у пла­не­ты жид­ко­го яд­ра. Жид­кое со­стоя­ние яд­ра (или его сфе­рич. слоя) бы­ло под­твер­жде­но в 2007 ра­дио­ло­кац. на­блю­де­ния­ми, а так­же ис­сле­до­ва­ния­ми, про­ве­дён­ны­ми КА «Мес­сенд­жер» в 2008. Вме­сте с тем рас­чё­ты по­ка­зы­ва­ют, что за вре­мя су­ще­ст­во­ва­ния пла­не­ты ис­ход­но жид­кое яд­ро долж­но бы­ло за­твер­деть, при­чём на его за­сты­ва­ние хва­ти­ло бы все­го 1,5–2 млрд. лет. Что­бы объ­яс­нить этот па­ра­докс, пред­по­ла­га­ют, что в ме­тал­лич. яд­ре при­сут­ст­ву­ют ле­ги­рую­щие эле­мен­ты, сни­жаю­щие темп-ру за­твер­де­ва­ния.

Соб­ст­вен­ное маг­нит­ное по­ле М. име­ет ди­поль­ный ха­рак­тер. Ин­дук­ция ди­поль­но­го маг­нит­но­го по­ля М. на эк­ва­то­ре дос­ти­га­ет 300 нТ, а у по­лю­сов – 700 нТ, что со­став­ля­ет ок. 1% ин­дук­ции зем­но­го маг­нит­но­го по­ля. На­клон оси маг­нит­но­го ди­по­ля к оси вра­ще­ния М. оце­ни­ва­ет­ся в пре­де­лах 5–12° (что близ­ко к на­кло­ну ди­по­ля Зем­ли), на­прав­ле­ние маг­нит­ных ди­по­лей у М. и Зем­ли сов­па­да­ет. От­сут­ст­вие ат­мо­сфе­ры в со­че­та­нии с за­мет­ным соб­ст­вен­ным маг­нит­ным по­лем пла­не­ты по­зво­ля­ет ис­сле­до­вать яв­ле­ния об­те­ка­ния маг­ни­то­сфе­ры сол­неч­ным вет­ром в ус­ло­ви­ях, ко­то­рые не реа­ли­зу­ют­ся боль­ше ни у од­ной пла­не­ты Сол­неч­ной сис­те­мы.

Бла­го­да­ря бли­зо­сти к Солн­цу фи­зич. про­цес­сы на М. во мно­гих от­но­ше­ни­ях уни­каль­ны. Ло­каль­ное маг­нит­ное по­ле Солн­ца, вмо­ро­жен­ное в плаз­му сол­неч­но­го вет­ра, взаи­мо­дей­ст­ву­ет с маг­ни­то­сфе­рой М. Кро­ме то­го, сол­неч­ный ве­тер про­ни­ка­ет не­по­сред­ст­вен­но к по­верх­но­сти пла­не­ты, при­но­ся в эк­зо­сфе­ру М. во­до­род и ге­лий, ко­то­рые мо­гут вре­мен­но им­план­ти­ро­вать­ся в ос­тыв­шую по­верх­ность ноч­ной сто­ро­ны М. В ус­ло­ви­ях вы­со­кой темп-ры днев­ной сто­ро­ны с по­верх­но­сти М. вы­де­ля­ют­ся ато­мы на­трия, ка­лия и каль­ция, по­пол­няя раз­ре­жен­ную и не­по­сто­ян­ную по плот­но­сти эк­зо­сфе­ру М. По весь­ма при­бли­зит. оцен­кам, эк­зо­сфе­ра М. име­ет сле­дую­щий со­став: ато­мы ка­лия (32%), на­трия (25%), ки­сло­ро­да (ок. 10%), ар­го­на (7%), ге­лия (6%), а так­же мо­ле­ку­лы азо­та и ки­сло­ро­да (по 5%), ди­ок­си­да уг­ле­ро­да, во­ды и во­до­ро­да (по 3%). М. не­пре­рыв­но те­ря­ет ато­мы и мо­ле­ку­лы эк­зо­сфе­ры и во­зоб­нов­ля­ет их из ука­зан­ных вы­ше ис­точ­ни­ков.

Про­бле­ма об­ра­зо­ва­ния М. от­но­сит­ся к глав­ным те­мам его ис­сле­до­ва­ний. Со­глас­но тео­рии по­сле­до­ва­тель­ной ак­кре­ции, од­ним из осн. ме­ха­низ­мов фор­миро­ва­ния пла­нет бы­ли ка­та­ст­ро­фич. со­уда­ре­ния с ни­ми круп­ных про­то­пла­нет­ных тел. Пред­по­ла­га­ет­ся, что в ре­зуль­та­те это­го ве­ще­ст­во внеш­ней обо­лоч­ки М. бы­ло вы­бро­ше­но в око­ло­пла­нет­ное про­стран­ст­во и уте­ря­но. Яд­ро М. мож­но рас­смат­ри­вать как ос­тат­ки струк­ту­ры бо­лее круп­ной пла­не­ты.

Исследования Меркурия в 20–21 вв.

Из-за бли­зо­сти М. к Солн­цу обес­пе­чить сбли­же­ние КА с М. на­мно­го слож­нее, чем с Мар­сом или Ве­не­рой. В этом слу­чае в хо­де по­лё­та КА дол­жен вы­пол­нять гра­ви­тац. ма­нёв­ры (напр., об­мен уг­ло­вым мо­мен­том с Ве­не­рой). В 1973 за­пу­щен пер­вый КА для ис­сле­до­ва­ния М. – «Ма­ри­нер-10» (США), в 2004 – КА «Мес­сенд­жер» (США). «Ма­ри­нер-10» три­ж­ды сбли­жал­ся с пла­не­той в 1974–1975, при­чём по­втор­ные сбли­же­ния, зна­чи­тель­но уве­ли­чив­шие ре­зуль­та­тив­ность мис­сии, не бы­ли пре­ду­смот­ре­ны про­ек­том и ока­за­лись ре­зуль­та­том ор­би­таль­ных ре­зо­нан­сов. По­ми­мо от­кры­тия маг­нит­но­го по­ля, из­ме­ре­ний в УФ- и ИК-диа­па­зо­нах спек­тра и ис­сле­до­ва­ний маг­ни­то­сфе­ры М., те­ле­ви­зи­он­ной съём­кой бы­ло ох­ва­че­но ок. 45% по­верх­но­сти пла­не­ты. В янв. 2008 «Мес­сенд­жер» по­сле не­сколь­ких гра­ви­тац. ма­нёв­ров при­бли­зил­ся к М. и за­тем ещё два­ж­ды сбли­жал­ся с пла­не­той. Уже при пер­вом сбли­же­нии на по­верх­но­сти М. бы­ли об­на­ру­же­ны со­еди­не­ния ок­си­дов же­ле­за и ти­та­на. Ла­зер­ная ло­ка­ция по­зво­ли­ла с вы­со­кой точ­но­стью по­лу­чить све­де­ния о рель­е­фе пла­не­ты. В даль­ней­шем пре­ду­смот­ре­на пол­ная съём­ка по­верх­но­сти М. В мар­те 2011 ап­па­рат стал пер­вым ис­кусств. спут­ни­ком пла­не­ты. Ре­зуль­та­ты, по­лу­чен­ные в 2011, по­зво­ли­ли сде­лать вы­во­ды об эво­лю­ции пла­не­ты, релье­фе и со­ста­ве по­вер­х­но­сти, эк­зо­сфе­ре, ис­то­рии вул­ка­низ­ма М., его маг­нит­ном по­ле и др.

Ев­роп. кос­мич. агент­ст­вом со­вме­ст­но с Япон. аэ­ро­кос­мич. агент­ст­вом раз­ра­ба­ты­ва­ет­ся мис­сия «BepiColombo», со­стоя­щая из двух КА, один из ко­то­рых ори­ен­ти­ро­ван на ис­сле­до­ва­ние по­верх­но­сти М., а дру­гой – на на­блю­де­ния маг­нит­но­го по­ля и маг­ни­то­сфе­ры пла­не­ты. За­пуск мис­сии пла­ни­ру­ет­ся на 2016.

В нач. 21 в. в Рос­сии раз­ра­бо­тан но­вый ме­тод ас­тро­но­мич. на­блю­де­ний М. Вы­со­кая чув­ст­ви­тель­ность ПЗС-мат­риц по­зво­ли­ла со­кра­тить экс­по­зи­ции изо­бра­же­ний М. до мил­ли­се­кунд, в те­че­ние ко­то­рых не­ста­биль­ность зем­ной ат­мо­сфе­ры не ус­пе­ва­ет раз­мыть изо­бра­же­ния. По­сле от­бо­ра и со­вме­ст­ной об­ра­бот­ки ме­то­дом кор­ре­ля­ци­он­но­го со­вме­ще­ния не­сколь­ких ты­сяч наи­бо­лее удач­ных элек­трон­ных сним­ков уда­ёт­ся син­те­зи­ро­вать сним­ки, чёт­кость ко­то­рых в 20–50 раз пре­вы­ша­ет чёт­кость ис­ход­но­го ма­те­риа­ла.

Эф­фек­тив­ным ме­то­дом ис­сле­до­ва­ний М. ста­ла на­зем­ная ра­дио­ло­ка­ция. С её по­мо­щью об­на­ру­же­ны не­обыч­ные свой­ст­ва грун­та не­ко­то­рых кра­те­ров вбли­зи сев. по­лю­са пла­не­ты: воз­мож­но, в этих мес­тах есть во­дя­ной лёд. По­сколь­ку ось вра­ще­ния М. пер­пен­ди­ку­ляр­на к плос­ко­сти ор­би­ты, дно кра­те­ров вбли­зи по­лю­сов ни­ко­гда не ос­ве­ща­ет­ся Солн­цем. Пред­по­ла­га­ют, что в та­ких кра­те­рах под сло­ем ре­го­ли­та мог на­ко­пить­ся слой льда, при­не­сён­но­го на М. ко­ме­та­ми или др. со­уда­ряю­щи­ми­ся с пла­не­той те­ла­ми.

Лит.: Ксан­фо­ма­ли­ти Л. В. Па­рад пла­нет. М., 1997; он же. По­верх­ность Мер­ку­рия по на­зем­ным ас­тро­но­ми­че­ским на­блю­де­ни­ям // Ас­тро­но­ми­че­ский вест­ник. 2008. Т. 42. № 6; он же. Не­из­вест­ный Мер­ку­рий // В ми­ре нау­ки. 2008. № 2; Strom R. G., Sprague A. L. Ex­plo­ring Mercury: the iron planet. L., 2003; Mer­cury / Ed. A. Balogh, L. Ksanfomality, R. von Steiger. Bern, 2008; Solomon S. C. ao. Re­turn to Mercury: a global perspective on ­MESSENGER’s first Mercury flyby // Scien­ce. 2008. Vol. 321. P. 59–62.

Вернуться к началу