ЗАЩИ́ТА ОТ КОРРО́ЗИИ
-
Рубрика: Химия
-
-
Скопировать библиографическую ссылку:
ЗАЩИ́ТА ОТ КОРРО́ЗИИ, комплекс мер, направленных на снижение скорости коррозии материалов. Под материалами в первую очередь подразумеваются металлы, которые применяются в качестве конструкционных материалов или входят в их состав. Поскольку именно металлы определяют осн. эксплуатационные характеристики изделий из конструкционных материалов, принято говорить о З. отк. конкретных объектов, напр. трубопроводов, разных видов транспорта, жел.-бетон. конструкций, подземных сооружений. Методы З. отк. можно разбить на следующие группы: методы повышения коррозионной стойкости материала, изоляции материала от химически агрессивной и коррозионной среды, снижения агрессивности среды, а также электрохимич. методы. Выбор метода З. отк. или (чаще всего) их комбинации определяется функциональными особенностями и условиями эксплуатации защищаемого изделия (конструкции), а также экономич. соображениями.
Если нельзя избежать контакта конструкционного материала с агрессивной средой, применяют металлы с повышенной коррозионной стойкостью. Практически важными коррозионностойкими конструкционными материалами являются алюминий, медь, никель, титан и сплавы на их основе. Если конструкционный материал не обладает достаточной коррозионной стойкостью, осн. металл легируют элементами, снижающими скорость коррозии. Так, основой мн. конструкционных материалов является склонное к коррозии железо. При его легировании хромом или никелем получают стойкие к атмосферной коррозии нержавеющие стали; разработаны стали, устойчивые к воздействию растворов азотной, серной и органич. кислот, щелочей. Подбирая легирующие компоненты, можно расширить область применения конструкционного материала. Напр., легирование медью значительно повышает стойкость ряда металлов к коррозии в восстановительных средах, в морской воде, легирование хромом – к воздействию окислительных сред. Экономически выгодным является поверхностное легирование: на поверхности недорогого и недостаточно коррозионностойкого металла создают тонкий слой сплава с высокой коррозионной стойкостью (напр., путём диффузионного цинкования, хромирования). Для З. отк. широко используют также электрохимич. методы нанесения тонких (обычно десятки мкм) слоёв из $\ce{Ni, Cr, Zn, Cd}$ и др. металлов. Кроме легирования важным в практике З. отк. (особенно от локальных видов коррозии) является удаление из конструкционного материала вредных примесей, которые могут образовывать с осн. металлом локальные гальванич. элементы. Для этого применяют спец. термическую и др. способы обработки материалов.
Для изоляции металлов от агрессивной среды используются защитные антикоррозионные покрытия. Метод применяют в тех случаях, когда покрытие не нарушает работу конструкции (изделия). Напр., в трубопроводном транспорте для внешней изоляции труб от грунтовых вод и атмосферной влаги используют однослойные полиэтиленовые или многослойные на основе битума, каменноугольного пека и полиэтиленовых плёнок покрытия. Большое распространение в строительстве, автомобильной пром-сти, судостроении, произ-ве бытовой техники и др. получили лакокрасочные и полимерные покрытия (в частности, из пластмасс на основе эпоксидных и полиуретановых смол), стекловидные эмали. Распространены также конверсионные покрытия – плёнки из стойких соединений защищаемого металла (фосфатные, оксидные, хроматные и др.), которые формируются при химич. или электрохимич. обработке поверхности; на эти плёнки наносят лакокрасочные покрытия. Защитные покрытия часто играют декоративную роль. Для защиты деталей сложной формы применяют метод электрофоретич. нанесения покрытий. Перспективно использование в качестве защитных покрытий тонких плёнок электропроводящих полимеров; такие плёнки формируются путём электрохимич. полимеризации.
Эффективным методом З. отк. является снижение концентрации вызывающих коррозию компонентов в средах, с которыми контактируют металлы. Напр., удаление растворённых кислорода и диоксида углерода из водных растворов нагреванием при пониженном давлении, продувкой инертными газами позволяет резко снизить коррозию железа, сталей, меди и её сплавов. Существенно снизить агрессивность растворов можно, добавляя в них небольшие количества (обычно доли %) ингибиторов коррозии – спец. веществ, в присутствии которых скорость коррозии резко уменьшается. Действие ингибиторов основано на их адсорбции на поверхности металла, образовании на поверхности металла защитной плёнки из труднорастворимых продуктов коррозии, а также смещении электродного потенциала металла либо в сторону более отрицательных значений относительно потенциала коррозии, либо в положительном направлении в область пассивного состояния (см. в ст. Пассивность металлов). В качестве неорганич. ингибиторов применяют фосфаты, бораты и др. соли неорганич. кислот, а также пероксиды. Органич. ингибиторы обычно используют для защиты металлов в кислых средах; в качестве таких ингибиторов применяют азот-, кислород- и серосодержащие гетероциклич. соединения, производные жирных кислот, тиомочевины и др. Эффективными методами защиты от атмосферной коррозии являются снижение в воздухе концентрации оксидов азота, серосодержащих газов и др. компонентов пром. выбросов, во влажных средах – создание условий, препятствующих накоплению на металлич. поверхности гигроскопич. продуктов коррозии и разл. загрязнений, а для материалов, эксплуатируемых в закрытых помещениях, – фильтрация и кондиционирование воздуха, поддержание темп-ры несколько выше темп-ры точки росы.
Электрохимическая (катодная и анодная) З. отк. основана на зависимости скорости коррозии от значения электродного потенциала металла. Существует два варианта катодной защиты. В первом – защита с наложенным током – через защищаемый металл, который контактирует с проводящей электрич. ток средой, от внешнего источника с помощью инертных вспомогательных электродов пропускают катодный ток. При этом электродный потенциал металла смещается в отрицательном направлении относительно значений, при которых протекает коррозия. Этот вариант обычно применяют для З. отк. протяжённых подземных металлич. конструкций (напр., трубопроводов, разл. кабелей). Преимущество – возможность легко поддерживать электродный потенциал материала в необходимых пределах. Во втором варианте катодной защиты (гальванич. защита) металлич. конструкцию непосредственно соединяют с массивным электродом из более электроотрицательного, чем компоненты материала конструкции, металла (напр., из $\ce{Zn, Mg}$, некоторых сплавов). Растворяясь, этот электрод (т. н. жертвенный анод) обеспечивает протекание катодного тока к защищаемому металлу и смещение электродного потенциала металла в отрицательном направлении относительно потенциала коррозии. Данный метод используют для З. отк. корпусов морских судов, морских нефтяных вышек и скважин, относительно небольших конструкций, требующих малого потребления тока. При использовании анодной защиты металл пассивируется и поддерживается в пассивном состоянии под действием внешнего анодного тока. Анодная защита применима к металлам и сплавам, для которых характерны широкие области электродных потенциалов пассивного состояния. Метод отличается экономичностью, т. к. потребление анодного тока от внешнего источника для поддержания пассивного состояния очень мало. Применяется для З. отк. ёмкостей с агрессивными химич. веществами.
Кроме выбора адекватного метода в комплекс мер по З. отк. входят контроль скорости коррозии с использованием спец. приборов – коррозиметров, диагностика коррозионного состояния, восстановление нарушенной защиты.